
Chapter VIII

Ising model

In statistical physics, the Ising model represents a simplified model for magnetization.
Each piece of the surface (here each face of the map) carries a unit of magnetization,
pointing either upward + or downward −. This can also be represented as a map with
bicolored faces black/white, or +/−, or any other convenient choice. The color is also
called the spin, worth + or −.

Our goal is to put the Ising model on a random map, i.e. study the generating
functions counting bi-colored maps.
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In this chapter, we extend the previous method of Tutte’s equations and its solution
by topological recursion, to bicolored maps, i.e. Ising model maps. The method is more
or less the same: define generating functions as formal series in tv where v is the number
of vertices, then write loop equations (generalization of Tutte’s equations), and then
solve loop equations.

The loop equation for the disc, is an algebraic equation, and thus the disc amplitude
is an algebraic function, called the ”spectral curve”.

Then, once we know the spectral curve, all the other amplitudes can be computed
by the topological recursion of chapter VII. It may look surprising that the same
topological recursion which solves the loop equations for non–colored maps, also solves
the more intricated loop equations of the Ising model. In fact, this same topological
recursion also solves the loop equations of many other enumerative geometry problems,
like the O(n)−model on a random map.
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In this chapter, we don’t present all computations in details, we just give the defini-
tions of the model, and the Tutte-like equations, and then the solution without detailed
proof.

The main new feature compared to maps, is that we also compute generating func-
tions for maps having fixed spins boundary conditions on their marked faces, that is
multi–colored boundaries. For such boundary generating functions, we merely state
the main results, without proofs (proofs are in the literature).

1 Bicolored maps

The Ising model is a model of maps carrying 2 possible ”colors” or 2 possible ”spins”
+ or −. Or, let us say, the unmarked faces can carry a spin + or −. Here, spin means
just color, the spin can take two values + or −.

Our maps are constructed by gluing the following sorts of oriented polygonal pieces,
marked on unmarked:
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Unmarked faces are required to have degree at least 3. And for the moment, we consider
that marked faces carry only spin +, and as usual, marked faces may have any degree,
and must have a marked edge.
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Definition 1.1 The set M
(g)
k (v) is defined to be the set of connected oriented Ising

maps of given genus g, with given number of marked faces k, and given number of
vertices v, which are obtained by gluing those (oriented) pieces together.

Like for uncolored maps, one easily proves, by computing the Euler characteristics,
that this is a finite set.

Example of a typical map contributing to M
(0)
1 , it is a planar triangulation, with

only one marked face of perimeter l1 = 8:
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We wish to enumerate those maps, recording numbers of all kinds of faces, and also
recording the numbers of edges gluing faces of the same color ++ or −−, or of different
colors +−.

Definition 1.2 We define the generating function

W (g)
k (x1, . . . , xk; t3, . . . , td, t̃3, . . . , t̃d̃, c++, c−−, c+−; t)

=
t δk,1δg,0

x1

+
∞∑

v=1

tv
∑

Σ∈M(g)
k (v)

tn3(Σ)
3 tn4(Σ)

4 . . . tnd(Σ)
d t̃ñ3(Σ)

3 t̃ñ4(Σ)
4 . . . t̃

ñd̃(Σ)

d̃

x1+l1(Σ)
1 x1+l2(Σ)

2 . . . x1+lk(Σ)
k

1

#Aut(Σ)
cn++(Σ)
++ cn−−(Σ)

−− cn+−(Σ)
+−

where nij(Σ) is the number of edges separating two faces of colors i and j.

W (g)
k (x1, . . . , xk; t3, . . . , td, t̃3, . . . , t̃d̃, c++, c−−, c+−; t) is a formal power series in

powers of t:
W (g)

k ∈ Q[{1/xi}, {tk}, {t̃k}, c++, c−−, c+−][[t]].

As usual, we write only the xi dependence explicitely, and for short we shall write:

W (g)
k (x1, . . . , xk; t3, . . . , td, t̃3, . . . , t̃d̃, c++, c−−, c+−; t) = W (g)

k (x1, . . . , xk)

and
Fg = W (g)

0 .
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Notice, that since a face can be glued to itself, the two faces on both sides of an
edge, may be not distinct.

It is not so easy to write directly some Tutte-like equations for W (g)
k , by removing

the marked edge recursively on those maps. In fact, it is much easier to first consider
a slightly different set of maps.

1.1 Reformulation

Instead of the previous Ising model, let us introduce another model. Consider maps,
whose unmarked pieces can be of spin + or −, and also with some bicolored pieces of
degree 2. We add the constraint that edges can be glued together along an edge only
if the spin is the same on both sides of the edge.
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Definition 1.3 We define a generating function, with a weight c for that new piece,
as well as a weight 1/a per number of ++ edges, and 1/b per number of −− edges:

Ŵ (g)
k (x1, . . . , xk; t3, . . . , td, t̃3, . . . , t̃d̃, a, b, c; t)

=
t δk,1δg,0

x1

+
∞∑

v=1

tv
∑

Σ∈M̂(g)
k (v)

tn3(Σ)
3 tn4(Σ)

4 . . . tnd(Σ)
d t̃ñ3(Σ)

3 t̃ñ4(Σ)
4 . . . t̃

ñd̃(Σ)

d̃

x1+l1(Σ)
1 x1+l2(Σ)

2 . . . x1+lk(Σ)
k
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1

#Aut(Σ)
a−n++(Σ) b−n−−(Σ) cn̂(Σ)

where n̂(Σ) is the number of bicolored pieces.

In this definition, the coefficient of tv is a formal power series in c (indeed M̂
(g)
k (v)

is not a finite set, because we can glue together as many bicolored pieces as we wish
without changing the number of vertices, but for each power of c, there is a finite number
of maps):

Ŵ (g)
k ∈ Q[{1/xi}, {tk}, {t̃k}, 1/a, 1/b][[c]][[t]].

The reason why we have introduced this model, is because it coincides with the
Ising model:

Theorem 1.1 The generating function Ŵ (g)
n of this model coincides with the generat-

ing function W (g)
n of the Ising model,

W (g)
k (x1, . . . , xk; t3, . . . , td, t̃3, . . . , t̃d̃, c++, c−−, c+−; t)

= Ŵ (g)
k (x1, . . . , xk; t3, . . . , td, t̃3, . . . , t̃d̃, a, b, c; t).

with the identification:
(
c++ c+−
c+− c−−

)−1

=

(
a −c
−c b

)
.

i.e.

c++ =
b

ab− c2
, c−− =

a

ab− c2
, c+− =

c

ab− c2
.

proof:
The sum over powers of c, is a geometrical series and can be performed explicitly.
We may glue several bicolored pieces so that both external sides have spin +:

2

+ + ++ ++ ++ ++ ++−− −− −−

1/a c / a bc / a b2 2 4 3

that corresponds to an effective ++ edge gluing weight:

c++ =
1

a

∑

k

c2k

ak bk
=

b

ab− c2

Similarly we may glue such pieces so that both external sides have spin −:

+

1/b c / b ac / b a2 2 4 3 2

− − − −− − − −−−−−++
++ +
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which corresponds to an effective −− edge gluing weight:

c−− =
1

b

∑

k

c2k

ak bk
=

a

ab− c2

And Similarly we may glue such pieces so that external sides have spin + and −:

2
c / a b c / a b3 2 5 3 3

++−− − −+ +

c / a b

which corresponds to an effective +− edge gluing weight:

c+− =
c

ab

∞∑

k=0

c2k

ak bk
=

c

ab− c2
.

Finally we recognize the matrix relationship

(
c++ c+−
c+− c−−

)−1

=

(
a −c
−c b

)
.

!

2 Tutte-like equations

Definition 2.1 We define the generating function of maps of genus g with n marked
faces of given perimeters:

T (g)
l1,...,ln

= (−1)n Res xl1
1 . . . xln

n W (g)
n (x1, . . . , xn) dx1 . . . dxn

We have:

W (g)
n (x1, . . . , xn) =

∑

l1,...,ln

T (g)
l1,...,ln

xl1+1
1 . . . xln+1

n

, (VIII-2-1)

as usual this equality is an equality of formal power series in t, and for each power of
t, the sum over l1, . . . , ln is a finite sum.

Definition 2.2 Let us also define T̂ (g)
l,k;l1,...,ln

to be the generating function of maps of
genus g, and n+1 marked faces. n of the marked faces are usual marked faces carrying
spin +, they have degrees li, i = 1, . . . , n, and one marked face, is of degree l + k, so
that there are l consecutive edges gluing to spin +, and k consecutive edges gluing to
spin −. If k ≥ 1, the marked edge on that marked face can always be assumed to be
the first + edge on the right side of a − edge.
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Similarly, we define G(g)
n,k(x; x1, . . . , xn) to be the generating series where we sum

over perimeter of marked faces weighted by x−li−1
i and x−l−1. We have:

T̂ (g)
l,k;l1,...,ln

= (−1)n+1 Res xl xl1
1 . . . xln

n G(g)
n,k(x; x1, . . . , xn) dx dx1 . . . dxn

(notice that we don’t sum over k), and

G(g)
n,k(x; x1, . . . , xn) =

∑

l,l1,...,ln

T̂ (g)
l,k;l1,...,ln

xl+1 xl1+1
1 . . . xln+1

n

. (VIII-2-2)

Also, if k = 0, we recover:
T̂ (g)
l,0;l1,...,ln

= T (g)
l,l1,...,ln

and
G(g)

n,0(x; x1, . . . , xn) = W (g)
n+1(x, x1, . . . , xn).

For example, here is a typical map contributing to T̂ (0)
6,2 :
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Consider a map contributing to T̂ (g)
l+1,k;l1,...,ln

. On the other side of the marked edge
(which is a + edge), there can be either:

• an unmarked spin + face of degree j, with 3 ≤ j ≤ d, and removing the marked
edge gives a map of T̂ (g)

l+j−1,k;l1,...,ln
weighted by tj/a.
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• a bicolored face (+−), and removing the marked edge gives a map of T̂ (g)
l,k+1;l1,...,ln

weighted by c/a.
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• the ith marked face of degree li, and removing the marked edge gives a map of
T̂ (g)
l+li−1,k;l1,...,li\,...,ln weighted by li/a.
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• the same marked face. In that case, removing the marked edge either disconnects
the map into two maps, or if there was a handle relating the 2 sides, it gives a map of
lower genus g − 1 and one more boundary.
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Finally, we see that bijectively removing the marked edge implies the following
relationships among generating functions:

a T̂ (g)
l+1,k;l1,...,ln

=
d∑

j=3

tjT̂ (g)
l+j−1,k;l1,...,ln

+c T̂ (g)
l,k+1;l1,...,ln

+
n∑

i=1

li T̂ (g)
l+li−1,k;l1,...,liX,...,ln

+
l−1∑

j=1

T̂ (g−1)
j,k;l−j−1,l1,...,ln

+
l−1∑

j=1

g∑

h=0

∑

J⊂{l1,...,ln}

T̂ (h)
j,k;IT

(g−h)
l−j−1,J\I .

Since those equations may increase k by 1, they can’t be closed, and thus we need
another equation. For that purpose, consider a map contributing to T̂ (g)

l,1;l1,...,ln
with

k = 1. It has a unique − edge, and on the other side of the − edge, there can be either:
• an unmarked spin − face of degree j, with 3 ≤ j ≤ d̃, and removing the − edge

gives a map of T̂ (g)
l,j−1;l1,...,ln

weighted by t̃j/b.
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• a bicolored face (+−), and removing the − edge gives a map of T̂ (g)
l+1,0;l1,...,ln

weighted by c/b.
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There cannot be another marked face, neither the same marked face, because there
is no other − edge to glue to.

Finally, in terms of generating functions we have

b T̂ (g)
l,1;l1,...,ln

=
d̃∑

j=3

t̃jT̂ (g)
l,j−1;l1,...,ln

+ c T̂ (g)
l+1,0;l1,...,ln

.

2.1 Equation for generating functions

eqdefUgnIsing
It is more interesting to define the Following series:

V ′
1(x) = ax−

d∑

j=3

tj x
j−1 , t2 = −a

V ′
2(y) = by −

d̃∑

j=3

t̃j y
j−1 , t̃2 = −b

c Y (x) = V ′
1(x)−W (0)

1 (x).

And:

U (g)
n (x, y; x1, . . . , xn) = (−cV ′

2(y) + c2x)δn,0δg,0 −
d̃∑

j=2

j−2∑

k=0

t̃j y
j−2−k G(g)

n,k(x; x1, . . . , xn)

(VIII-2-3)

P (g)
n (x, y; x1, . . . , xn) =

d∑

j=2

d̃∑

j̃=2

j−2∑

l=0

j̃−2∑

k=0

∑

l1,...,ln

tj t̃j x
j−2−l y j̃−2−k

T̂ (g)
l,k;l1,...,ln

xl1+1
1 . . . xln+1

n

.

(VIII-2-4)

Notice that U (g)
n (x, y; x1, . . . , xn) is a polynomial in y, and P (g)

n (x, y; x1, . . . , xn) is a
polynomial in both x and y.

In terms of these, the loop equations become:

Theorem 2.1 The generating functions of the Ising model satisfy the following set of
equations (called ”loop equations” or ”Tutte–like equations”):

c (y − Y (x))U (g)
n (x, y; x1, . . . , xn) +W (g)

n+1(x, x1, . . . , xn)U
(0)
0 (x, y)
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+U (g−1)
n+1 (x, y; x, x1, . . . , xn)

+
g∑

h=0

′∑

I⊂{x1,...,xn}

U (h)
#I (x, y; I)W

(g−h)
n+1−#I(x, J \ I)

+
n∑

i=1

∂

∂xi

U (g)
n (x, y; {x1, . . . , xn} \ {xi})− U (g)

n (xi, y; {x1, . . . , xn} \ {xi})
x− xi

= c ((V ′
1(x)− cy)(V ′

2(y)− cx) + t c) δn,0δg,0 − P (g)
n (x, y; x1, . . . , xn). (VIII-2-5)

3 Solution of loop equations

Loop equation eq.(VIII-2-5) look substantially more intricated than Tutte’s equations
for maps without Ising spins, however, as we shall see, the symplectic invariants of
chapter VII still give the solution.

3.1 The disc: spectral curve

The disc corresponds to n = 0 and g = 0, for which the loop equation reads

c (y − Y (x)) U (0)
0 (x, y) = c(V ′

1(x)− cy)(V ′
2(y)− cx)− P (0)

0 (x, y) + t c2.

The right hand side is a polynomial of both x and y, and we call it E(x, y):

E(x, y) = (V ′
1(x)− cy)(V ′

2(y)− cx)− 1

c
P (0)
0 (x, y) + t c.

Notice that (V ′
1(x)− cy)(V ′

2(y)− cx) is a polynomial of x of degree d and of y of degree

d̃, whereas P (0)
0 (x, y) is a polynomial of x of degree d− 2 and of y of degree d̃− 2.

The loop equation for the disc can thus be written

(y − Y (x)) U (0)
0 (x, y) = E(x, y). (VIII-3-1)

Since U (0)
0 (x, y) is a polynomial in y, it has no pole at y = Y (x), and thus, by

substituting y → Y (x) we get
E(x, Y (x)) = 0

This equation shows that Y (x) is an algebraic function of x, and therefore W (0)
1 (x) =

V ′
1(x)−cY (x) is an algebraic function of x. Moreover, we leave to the reader a straight-

forward generalization of the 1-cut Brown’s Lemma (see section 1.2 in chapter III) ,
which shows that this algebraic equation must be of genus 0, and thus the solution can
be parametrized by rational functions. Like Zhukowski variable, we define:

{
x(z) = γ z +

∑d̃−1
k=0 αkz−k

Y (x(z)) = y(z) = γ z−1 +
∑d−1

k=0 βkz
k

Writing that this parametrization is solution of E(x(z), y(z)) = 0, determines all the

coefficients γ,αk, βk, as well as all coefficients of the polynomial P (0)
0 (x, y), as algebraic

functions of t, a, b, c, tj, t̃j , (they are thus algebraic power series in t).
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Theorem 3.1 The disc amplitude Y (x) = 1
c (V

′
1(x)−W (0)

1 (x)) is determined as follows:
Let {

x(z) = γ z +
∑d̃−1

k=0 αkz−k

Y (x(z)) = y(z) = γ z−1 +
∑d−1

k=0 βkz
k

where γ,αk, βk are the unique solutions of the system of equations

V ′
1(x(z))− cy(z) ∼

z→∞

t

γz
+O(1/z2)

V ′
2(y(z))− cx(z) ∼

z→0

t z

γ
+O(z2)

such that

γ2 =
ct

ab− c2
+O(t2).

Then the disc amplitude Y (x) is:

Y (x(z)) = y(z).

proof:
First, notice that there is a unique solution of loop equations which is a power

series in t (other solutions would have negative or fractional powers of t), indeed, those
eqations correspond to recursively adding edges, and they uniquely allow to construct
every Ising map). One can check that this parametric curve is indeed solution of loop
equations, and it is a power series of t, therefore it is the solution needed. !

Definition 3.1 The spectral curve E = (x, y) is the pair of rational functions x(z) and
y(z): {

x(z) = γz +
∑d̃−1

k=0 αkz−k

y(z) = γ
z +

∑d−1
k=0 βkz

k

where αk, βk, γ are determined by

V ′
1(x(z)) = cy(z) +

t

γz
+O(z−2) , V ′

2(y(z)) = cx(z) +
t z

γ
+O(z2)

and we choose the unique solution such that γ2 = O(t) at small t.

Theorem 3.2 (Algebraic equation) The functions x(z) and y(z) are related by the
algebraic equation E(x(z), y(z)) = 0, where E(x, y) is the polynomial of two variables
given by the resultant:

E(x, y) =
− (−1)d̃ c2

γd+d̃−2
det





γ α0 − x α1 . . . αd2

γ α0 − x α1 . . . αd2
. . . . . .

. . . . . .
γ α0 − x α1 . . . αd2

βd1 . . . β1 β0 − y γ
βd1 . . . β1 β0 − y γ

. . . . . .
βd1 . . . β1 β0 − y γ
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proof:
The resultant vanishes if and only if there is a z which is a common zero of x(z)−

x = 0 and y(z) − y = 0, indeed observe that the vector (1, z−1, z−2, z−3, . . .) is an
eigenvector of that matrix, for the eigenvalue 0. The resultant is thus a polynomial of
x and y of the correct degree, which vanishes exactly when E(x, y) vanishes, it is thus
proportional to E(x, y). The prefactor is determined by matching the large x behavior
of E(x, y) ∼ −cxV ′

1(x). !

Theorem 3.3 Variational principle
One can determine the coefficients αk, βk, γ by extremizing the functional:

µ(γ,αk, βk) = Res
z→∞

(V1(x(z)) + V2(y(z))− c x(z)y(z))
dz

z
+ 2t ln γ

proof:

∂µ

∂αk
= Res

z→∞
(V ′

1(x(z))− cy(z))
dz

zk+1

= Res
z→∞

(
t

γz
+O(1/z2)

)
dz

zk+1

= 0

∂µ

∂βk
= Res

z→∞
(V ′

2(y(z))− cxz)) zk−1 dz

= − Res
z→0

(V ′
2(y(z))− cxz)) zk−1 dz

= − Res
z→0

(
tz

γ
+O(z2)

)
zk−1 dz

= 0

∂µ

∂γ
= Res

z→∞
(V ′

1(x(z))− cy(z)) dz + Res
z→∞

(V ′
2(y(z))− cx(z))

dz

z2
+

2t

γ

= Res
z→∞

(V ′
1(x(z))− cy(z)) dz − Res

z→0
(V ′

2(y(z))− cx(z))
dz

z2
+

2t

γ

= Res
z→∞

(
t

γz
+O(1/z2)

)
dz − Res

z→0

(
tz

γ
+O(z2)

)
dz

z2
+

2t

γ

= − t

γ
− t

γ
+

2t

γ
= 0

Reciprocally, if ∂µ/∂αk = 0 for all k that means

Res
z→∞

(V ′
1(x(z)) − cy(z))

dz

zk+1
= 0

and thus V ′
1(x(z)) − cy(z) = O(1/z). Similarly, ∂µ/∂βk = 0 for all k implies that

V ′
2(y(z))− cx(z) = O(z). And then, ∂µ/∂γ = 0 implies that V ′

1(x(z))− cy(z) ∼ t/x(z)
and V ′

2(y(z))− cx(z) ∼ t/y(z).
!
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3.2 Example: Ising model on quadrangulations

We chose only t4 and t̃4 non-vanishing.
We have V ′

1(x) = ax− t4x3 and V ′
2(y) = by − t̃4y3.

Theorem 3.1 says that we should look for 2 rational functions x(z) and y(z) of the
form (we exploit the parity of V1 and V2):

x(z) = γz + α1z
−1 + α3z

−3 , y(z) = γ/z + β1z + β3z
3.

We need to compute:

V ′
1(x(z)) = a(γz + α1z

−1)− t4(γ
3z3 + 3α1γ

2z + 3α3γ
2z−1 + 3α2

1γz
−1) +O(z−3)

and thus:

c β3 = −t4γ
3 , cβ1 = aγ − 3t3α1γ

2 , aα1 − 3t4(α3γ
2 + α2

1γ)− cγ =
t

γ
,

and similarly by computing V ′
2(y(z))− cx(z):

cα3 = −t̃4γ
3 , cα1 = bγ − 3t̃3β1γ

2 , bβ1 − 3t4(β3γ
2 + β2

1γ)− cγ =
t

γ
.

Let us consider for simplicity the symmetric case, where a = b and t4 = t̃4. In that
case we shall find αi = βi, and thus:

cα3 = −t4γ
3 , cα1 = aγ − 3t4α1γ

2 , aα1 − 3t4(α3γ
2 + α2

1γ)− cγ =
t

γ
,

That gives an algebraic equation of degree 5 for γ2:

(c+ 3t4γ
2)2 (t+ cγ2 − 3

t24
c
γ6)− ca2γ2 = 0.

and we chose the unique solution which behaves at small t like

γ2 =
c t

a2 − c2
+O(t2).

We then have

α1 =
a γ

c+ 3t4γ2
, α3 = − t4γ3

c
.

3.3 All topologies generating functions

Then, knowing this spectral curve we have for Ising maps the equivalent of theorem
III.3.1 :

Theorem 3.4 The generating functions counting Ising maps, are given by the sym-
plectic invariants of chapter VII:

Fg = Fg(E)
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For the spectral curve E = (C, x, y, B(z, z′) = dz dz′/(z−z′)2). The ω(g)
n (E)’s of chapter

VII give the generating functions of maps with n marked faces of spin +:

W (g)
n (x(z1), . . . , x(zn)) dx(z1) . . . dx(zn) = ω(g)

n (z1, . . . , zn)
+δn,1 δg,0 V

′
1(x(z1)) dx(z1)

+δn,2 δg,0
dx(z1) dx(z2)

(x(z1)− x(z2))2

(V III − 3− 2)

This theorem was proved in [], and in this version of the book, we skip the proof.
We just mention that the proof is much more technical than for uncolored maps, it is
not at all a straightforward extension of chapter III.

4 Mixed boundary conditions

So far, we have been considering marked faces, as well as unmarked faces carrying one
spin in their center.

Now, let us also consider marked faces having different spins on their sides (un-
marked faces will always have only one spin, either + or −). A typical marked face
can be:

+
+ −

−
+

++−−+
−

Let us construct a good set of generating functions for counting maps with such
marked faces with spin boundary conditions.

4.1 Maps with mixed boundaries

First, consider maps having n marked faces, of respective perimeters l1, . . . , ln, such
that the ith marked face has 2ki changes of boundary conditions:

marked face i = li,1 spin+, l̃i,1 spin−, li,2 spin+, l̃i,2 spin−, . . . , li,ki spin+, l̃i,ki spin − .

li =
ki∑

j=1

li,j + l̃i,j .

Our goal is to compute the generating function which enumerates such configura-
tions:

∞∑

v=1

tv
∑

Σ∈M(g)
n;k1,...,kn

(v)

tn3(Σ)
3 tn4(Σ)

4 . . . tnd(Σ)
d t̃ñ3(Σ)

3 t̃ñ4(Σ)
4 . . . t̃

ñd̃(Σ)

d̃
∏n

i=1

∏ki
j=1 x

1+li,j(Σ)
i,j y

1+l̃i,j(Σ)
i,j
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1

#Aut(Σ)
a−n++(Σ) b−n−−(Σ) cn̂(Σ)

This generating function depends on k parameters of type xi,j (associated to spin +
boundaries of length li,j) and k parameters of type yi,j (associated to spin − boundaries
of length l̃i,j), where 2k is the total number of boundary condition changes:

k =
n∑

i=1

ki.

Fixed k

From now on, it will be better to compute at once all generating functions with a given
k, i.e. with an arbitrary number of marked faces, provided that the total number of
boundary condition changes is 2k.

For instance for k = 2, we have either 2 marked faces with k1 = k2 = 1, or 1 marked
face with k1 = 2.

For example the following maps both correspond to k = 2. The first one has two
marked faces, one with l1,1 = 5, l̃1,1 = 3 and one with l2,1 = 3, l̃2,1 = 4, and the second
map has only one marked face with l1,1 = 3, l̃1,1 = 1, l1,2 = 2, l̃1,2 = 2:

+
+ +

+

+

−−

−

+
+ +

−

−
−−

+
+

+
−

+

−
−

+

−
−−

−

−

−

+ −
+
+−

+
−

+
+

− +
−

−

+
+

+

−

−

−

−

+
+

+
−

+

−
−

+

−
−−

−

−

−

+ −
+
+−

+
−

+
+

− +
−

−

+

−

−

++
+

+
+

−
−

++

For that purpose, let us consider k parameters xi, i = 1, . . . , k associated to spin +
pieces of boundaries of length li, and k parameters yi, i = 1, . . . , k associated to spin
− pieces of boundaries of length l̃i. Let us consider all possible boundary conditions
which can be encoded by those 2k parameters.

Consider x1, it is associated to a piece of + boundary of length l1 of some marked
face. Going around the marked face (in the direction defined by the map orientation),
it must be followed by a − piece of boundary yπ(1) of length l̃π(1), where π is some
permutation of indices. Then, the − piece of boundary yπ(1) must be followed by a +
piece of boundary, let us call it xπ′−1(π(1)), where π′ is another permutation. We proceed
until we have completed a cycle around a marked face, i.e. until we have completed a
cycle of the permutation π′−1 ◦ π. Then we repeat the same procedure for all cycles of

327



π′−1 ◦ π.

y

’
−1

π’
−1

π’
−1

π’
−1

π’
−1

π’
−1y

y

y
i

π (i)

x
π( π’−1(i))

π’(i)

x
π

π

π

π

π

π

y

x

xπ

Considering all pairs of permutations (π, π′) exhausts all possible boundary conditions

with 2k changes of boundary spins.

Definition 4.1 Let us define the following generating function:

Ĥ(g)
π,π′(x1, . . . , xk; y1, . . . , yk)

= −c δg,0 δk,1

+
∞∑

v=1

tv
∑

Σ∈M(g)
π,π′(v)

tn3(Σ)
3 tn4(Σ)

4 . . . tnd(Σ)
d t̃ñ3(Σ)

3 t̃ñ4(Σ)
4 . . . t̃

ñd̃(Σ)

d̃
∏k

i=1 x1+li(Σ)
i y1+l̃i(Σ)

i

1

#Aut(Σ)
a−n++(Σ) b−n−−(Σ) cn̂(Σ)

We also define the generating functions resummed with the genus:

Ĥπ,π′(x1, . . . , xk; y1, . . . , yk) =
∞∑

g=0

(N/t)2−2g−#(π′−1◦π) Ĥ(g)
π,π′(x1, . . . , xk; y1, . . . , yk)

(VIII-4-1)
where ((π′−1 ◦ π) is the number of cycles of π′−1 ◦ π. As usual, this equality is to be
understood as an equality of formal series in t, and for each power of t, the sum over
g is finite.

Ĥ(g)
π,π′(x1, . . . , xk; y1, . . . , yk) counts maps drawn on surfaces of genus g, with ((π′−1 ◦

π) boundaries, and whose boundaries are labeled by a sequence of x and y variables
according to the cycles of π′−1 ◦ π.
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Example of a surface of genus 2, with k = 8, and such that π ◦ π′−1 has 3 cycles:

−1

y

y

y
y

π

π

π’(1)y

(1)

1 ’(π(1))x

y

x

y

y x

x

x
x

xx

Non connected generating functions

The formulae that will follow are better written using generating function for non-
necessarily connected maps. But we require that connected pieces contain at least one
boundary.

We define generating functions of non-connected maps, as the product of connected
ones.

For example for k = 1 there is only one boundary, and the map must be connected,
we define

HId1,Id1(x; y) = ĤId1,Id1(x; y).

For k = 2, if (π, π′) = (Id2, Id2), we see that π ◦ π′−1 has two cycles, so the maps can
either be connected with 2 boundaries, or disconnected, thus we define:

HId2,Id2(x1, x2; y1, y2) = ĤId2,Id2(x1, x2; y1, y2) + ĤId1,Id1(x1; y1) ĤId1,Id1(x2; y2)

and if (π, π′) = (Id2, (1, 2)), we see that π ◦ π′−1 has only one cycle, so it must be
connected and thus we define

HId2,(1,2)(x1, x2; y1, y2) = ĤId2,(1,2)(x1, x2; y1, y2).

And so on.

In general,

Definition 4.2 H(g)
π,π′ is defined as the sum of products of Ĥ(g)

πi,π′
i
for all possible ways of

decomposing the permutation π ◦π′−1 into a product disjoint permutations
∏

i πi ◦π
′−1
i .
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The matrix generating function

For every pair of permutations of k variables (π, π′), we have defined a generating
function Hπ,π′. Let us now consider them all together into a k!× k! matrix.

Example with k = 3, we have the 6× 6 matrix
Id (12) (13) (23) (123) (132)

Id

x y
1 1

x y2 2

x y3 3

x y1 1

xy 22

x y3 3

x y1 1

xy 33

x y2 2

x y2 2

xy 33

x y1 1

x y1 1

xy
32

x y2 3

x y1 1

xy
23

x y3 2

(12)

x y1 2

xy 21

x y3 3

x y
1 2

x y2 1

x y3 3

x y1 2

xy
23

x y3 1

x y1 2

xy
31

x y2 3

x y2 1

xy 33

x y1 2

x y1 2

xy 33

x y2 1

(13)

x y1 3

xy 31

x y2 2

x y1 3

xy
32

x y2 1

x y
1 3

x y2 2

x y3 1

x y1 3

xy
21

x y3 2

x y1 3

xy 22

x y3 1

x y2 2

xy 31s

x y1 3

(23)

x y2 3

xy 32

x y1 1

x y1 1

xy
22

x y3 3

x y1 1

xy
33

x y2 2

x y
1 1

x y2 3

x y3 2

x y1 1

xy 32

x y2 3

x y1 1

xy 23

x y3 2

(123)

x y1 2

xy
21

x y3 3

x y2 3

xy 31

x y1 2

x y1 2

xy 23

x y3 1

x y1 2

xy 31

x y2 3

x y
1 2

x y2 3

x y3 1

x y1 2

xy
33

x y2 1

(132)

x y1 3

xy
31

x y2 2

x y1 3

xy 32

x y2 1

x y2 1

xy 32

x y1 3

x y1 3

xy 21

x y3 2

x y1 3

xy
22

x y3 1

x y
1 3

x y2 1

x y3 2

(here the pictures means that we take into account all surfaces of all genus, and
possibly disconnected, with the corresponding boundaries).

We have several important results:

Theorem 4.1 The matrix H(x1, . . . , xk; y1, . . . , yk) is symmetric:

Hπ,π′(x1, . . . , xk; y1, . . . , yk) = Hπ′,π(x1, . . . , xk; y1, . . . , yk) (VIII-4-2)

proof:
It just consists in remarking that reversing the orientation of a map, gives another

map, with the same number k of boundary conditions, and reversing the boundary just
exchanges π and π′. !

Commutation relations

Then, we have a non-trivial result:

Theorem 4.2 We have

[H(x1, . . . , xk; y1, . . . , yk),A] = 0
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∀ i = 1, . . . , k , [H(x1, . . . , xk; y1, . . . , yk),Ai] = 0

where

(Ai)π,π′ =






yπ(i) if π′ = π
−t
N c

1
xi−xj

if π′ = π ◦ (ij)
0 otherwise

.

and A =
∑

i xiAi:

Aπ,π′ =






∑
i xiyπ(i) if π′ = π

−t
N c if π−1 ◦ π′ = transposition
0 otherwise

.

Example with k = 3:

A1 =





y1
−t
N c

1
x1−x2

−t
N c

1
x1−x3

0 0 0
−t
N c

1
x1−x2

y2 0 0 0 −t
N c

1
x1−x3

−t
N c

1
x1−x3

0 y3 0 −t
N c

1
x1−x2

0

0 0 0 y1
−t
N c

1
x1−x3

−t
N c

1
x1−x2

0 0 −t
N c

1
x1−x2

−t
N c

1
x1−x3

y2 0

0 −t
N c

1
x1−x3

0 −t
N c

1
x1−x2

0 y3





And we have the corollary

Theorem 4.3 For every ξ, η complex numbers, the matrix H(x1, . . . , xk; y1, . . . , yk)
commutes with the matrix M(x1, . . . , xk; y1, . . . , yk; ξ, η) defined by:

Mπ,π′(x1, . . . , xk; y1, . . . , yk; ξ, η) =
k∏

i=1

(
δπ(i),π′(i) −

t

N c

1

(xi − ξ) (yπ(i) − η)

)
.

(VIII-4-3)
(it is a symmetric matrix).

We have

∀ ξ, η , [H(x1, . . . , xk; y1, . . . , yk),M(x1, . . . , xk; y1, . . . , yk; ξ, η)] = 0
(VIII-4-4)

proof:
We first prove theorem 4.2. We use again some Tutte like equations1.
Consider the boundary containing x1, and consider the first edge of that boundary,

it has a sign +.
When we erase this edge, several situations may occur:
• on the other side of the removed edge, we have a j gon of sign +, then the

corresponding term in Tutte equation will be:

ax1Hπ,π′(x1, . . . , xk; y1, . . . , yk) = (
∑

j

tjx
j−1
1 Hπ,π′(x1, . . . , xk; y1, . . . , yk))−+other possibilities

1The proof of these two theorems was done in []. The proof presented here, is much simpler, and
is due to Luigi Cantini in 2007,. It was never published and we thank L. Cantini for that proof.
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where the subscript ()− means that we keep only negative powers of x1.
• on the other side of the removed edge, we have a bicolored (+−) face, i.e. after

removing the edge, we get an edge of sign −, which thus enters the boundary yπ′(1),
then the corresponding term in Tutte equation will be:

ax1Hπ,π′(x1, . . . , xk; y1, . . . , yk) = c (yπ′(1)Hπ,π′(x1, . . . , xk; y1, . . . , yk))−+other possibilities

and the subscript ()− means that we keep only negative powers of yπ′(1).
• on the other side of the removed edge, we have an edge of the same face or of

another marked face, let us say it is xj for some j *= 1. Erasing the edge either discon-
nects the boundary into two pieces (and reduces the genus by 1), or on the contrary
merges two boundaries. In both cases, the boundary (π, π′) becomes (π, π′ (1j)). Then
the corresponding term in Tutte equation will be:

ax1Hπ,π′(x1, . . . , xk; y1, . . . , yk) =
t

N

−1

x1 − xj

(
Hπ,π′(1,j)(x1, . . . , xk; y1, . . . , yk)

−Hπ,π′(1,j)(xj , x2, . . . , xk; y1, . . . , yk)
)

+other possibilities

• on the other side of the removed edge, we have an edge of the x1 component
of the same boundary. Erasing the edge either disconnects the boundary into two
pieces, which either disconnects the surface, or decreases the genus by 1. Then the
corresponding term in Tutte equation will be:

ax1Hπ,π′(x1, . . . , xk; y1, . . . , yk) = W (x1)Hπ,π′(x1, . . . , xk; y1, . . . , yk)

+H(1)
π,π′(x1, . . . , xk; y1, . . . , yk; x1) + other possibilities

where H(1)
π,π′(x1, . . . , xk; y1, . . . , yk; x1) gathers all the possibilities of disconnecting the

surface or decreasing the genus by 1.
Finally, writing that ax−

∑
j tjx

j−1 = V ′
1(x), that gives

((V ′
1(x1)−W (x1))Hπ,π′(x1, . . . , xk; y1, . . . , yk))−

−H(1)
π,π′(x1, . . . , xk; y1, . . . , yk; x1)

− t

N

∑

j (=1

1

x1 − xj
Hπ,π′(1,j)(xj , x2, . . . , xk; y1, . . . , yk)

= c yπ′(1) Hπ,π′(x1, . . . , xk; y1, . . . , yk)−
t

N

∑

j (=1

1

x1 − xj
Hπ,π′(1,j)(x1, . . . , xk; y1, . . . , yk)

= c
∑

π′′

Hπ,π′′(x1, . . . , xk; y1, . . . , yk)π′′,π′ (A1)π′′,π′ .

The key is to observe that all the terms in the left hand side are symmetric under
transposition π ↔ π′, and thus, taking the difference of that equation with its transpose
gives:

0 = HA1 − (H A1)
t = HA1 −A1H = [H,A1].

The proof is similar for the other Aj’s. This ends the proof of theorem 4.2.
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We shall not prove theorem 4.3 here. We just give an argument towards it. The
full proof is very involved and relies on group theory, so is beyond the scope of this
book (more on the properties of matrices M can be found in [34, 75]).

The argument, is that the algebra of k!× k! matrices which commute with all Ai’s
is generated by the matrices M.

Just observe that all those matrices commute together:

∀ ξ, ξ′, η, η′ , [M(x1, . . . , xk; y1, . . . , yk; ξ, η),M(x1, . . . , xk; y1, . . . , yk; ξ
′, η′)] = 0

(this commutation relation is not trivial, it relies on group theory of the unitary group
U(k) []).

Then, expanding M at large ξ and η, one has

A =
−Nc

t
Res
ξ→∞

Res
η→∞

ξη(M− (1 +
k(k − 1)

2

t2

N2 c2
) Idk!)

which implies that [A,M] = 0.
Similarly, expanding at η → ∞ and ξ → xi we have

Ai =

(
t

Nc

∑

j (=i

1

xi − xj

)

Idk! +
Nc

t
Res
ξ→xi

limη→∞η (M− Id),

which implies that [Ai,M] = 0.
There are also matrices Mi,j defined as

Mi,j(x1, . . . , xk; y1, . . . , yk) = Res
ξ→xi

Res
η→yj

M(x1, . . . , xk; y1, . . . , yk; ξ, η)

which also commute with all the others

[Mi,j,M] = 0.

!

Example k = 2

Let us see what this theorem tells us for k = 2:
We have

A =

(
x1y1 + x2y2

−t
Nc

−t
Nc x1y2 + x2y1

)
= x1A1 + x2A2,

A1 =

(
y1

−t
Nc

1
x1−x2

−t
Nc

1
x1−x2

y2

)
, A2 =

(
y2

−t
Nc

1
x2−x1

−t
Nc

1
x2−x1

y1

)
,

and we find that the matrix M is

M(x1, x2; y1, y2; ξ, η) =

(
1− t

Nc

2ξη − ξ(y1 + y2)− η(x1 + x2)− t
Nc

(x1 − ξ)(y1 − η)(x2 − ξ)(y2 − η)

)
Id2

− t

Nc

1

(x1 − ξ)(y1 − η)(x2 − ξ)(y2 − η)
A,
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and

M1,1 =
−t

N c

(
1 0
0 0

)
+

t2

N2 c2
1

(x1 − x2) (y1 − y2)

(
1 1
1 1

)

=
t

N c

x1y2 + x2y1 +
t

Nc

(x1 − x2)(y1 − y2)
Id2 −

t

N c

A
(x1 − x2)(y1 − y2)

.

One easily verifies that they all commute together.
The eigenvalues of A are:

λ =
(x1 + x2)(y1 + y2)

2
± 1

2

√
(x1 − x2)2 (y1 − y2)2 + 4

t2

N2 c2
.

and the eigenvalues of A1 and A2 are

λ1 =
y1 + y2

2
± 1

2(x1 − x2)

√
(x1 − x2)2 (y1 − y2)2 + 4

t2

N2 c2

λ2 =
y1 + y2

2
∓ 1

2(x1 − x2)

√
(x1 − x2)2 (y1 − y2)2 + 4

t2

N2 c2

The common vectors of all these matrices, normalized so that
∑

π(−1)πvπ = 1 are:

v =
1

2 x12 y12




2t
N c + x12 y12 +

√
x2
12 y

2
12 + 4 t2

N2 c2

2t
N c − x12 y12 +

√
x2
12 y

2
12 + 4 t2

N2 c2





where we have denoted xij = xi − xj and yij = yi − yj to shorten the notations.
The matrix V with entries Vi,j =

∑
π, π(i)=j(−1)π vπ, that we shall consider in the

next section is:

V =
1

2

(
1 1
1 1

)
+

2t
N c +

√
x2
12 y

2
12 + 4 t2

N2 c2

2 x12 y12

(
1 −1
−1 1

)

Then write

H(x1, x2; y1, y2) =

(
HId2,Id2(x1, x2; y1, y2) HId2,(1.2)(x1, x2; y1, y2)
H(1,2),Id2(x1, x2; y1, y2) H(1,2),(1.2)(x1, x2; y1, y2)

)

That gives

[M(x1, x2; y1, y2; ξ, η), H(x1, x2; y1, y2)]

=
(
(x1 − x2)(y2 − y1)HId2,(1.2)(x1, x2; y1, y2) +

t

N c
(HId2,Id2(x1, x2; y1, y2)

−H(1,2),(1.2)(x1, x2; y1, y2))
) ( 0 1

1 0

)

and therefore theorem 4.3 implies

HId2,(1.2)(x1, x2; y1, y2) =
t

N c

HId2,Id2(x1, x2; y1, y2)−H(1,2),(1,2)(x1, x2; y1, y2)

(x1 − x2) (y1 − y2)
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This can be rewritten in terms of connected Ĥ, and also written for fixed genus:

c Ĥ(g)
Id2,(1.2)

(x1, x2; y1, y2)

=
Ĥ(g−1)

Id2,Id2
(x1, x2; y1, y2)− Ĥ(g−1)

(1,2),(1,2)(x1, x2; y1, y2)

(x1 − x2) (y1 − y2)

+
g∑

h=0

Ĥ(h)
Id1,Id1

(x1; y1) Ĥ
(g−h)
Id1,Id1

(x2; y2)− Ĥ(h)
Id1,Id1

(x1; y2) Ĥ
(g−h)
Id1,Id1

(x2; y1)

(x1 − x2) (y1 − y2)
.

In particular, for the planar case g = 0, that gives:

Corollary 4.1

c Ĥ(0)
Id2,(1.2)

(x1, x2; y1, y2)

= −
Ĥ(0)

Id1,Id1
(x1; y1) Ĥ

(0)
Id1,Id1

(x2; y2)− Ĥ(0)
Id1,Id1

(x1; y2) Ĥ
(0)
Id1,Id1

(x2; y1)

(x1 − x2) (y1 − y2)
.

(V III − 4− 5)

Graphically it says that:

x1

x y2 2

y
1 x1

x y2 2

y
1

x1

x y2 1

y
2

- c (x1 (y
1

- x  ) - y  )2 2

At the time of writing of this book, there is no known combinatorical interpretation
to that remarkable relationship.

Eigenvalues and eigenvectors of the commuting matrices Ai,A,M,Mi,j

The k! × k! matrices Ai all commute [Ai,Aj] = 0, and they also commute with M,
and thus they have a common basis of eigenvectors.

Finding the eigenvalues of a k!×k! matrix is not easy, and fortunately, the following
theorem allows to find these eigenvalues, only in terms of k×k matrices, which is much
easier:

Theorem 4.4 Let Y = diag(y1, . . . , yk) and Ξ the k × k antisymmetric matrix Ξi,j =
t
N

1
xi−xj

if i *= j, and Ξi,i = 0. Let Λ = diag(λ1, . . . ,λk) be a solution (there are k!

solutions to this algebraic equation) of

∀ η , det(η Idk − Λ− Ξ) = det(η Idk − Y ),

i.e. find Λ such that the eigenvalues of Λ+ Ξ are y1, . . . , yk

sp(Λ+ Ξ) = {y1, . . . , yk}.
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Then, let Vi,j be the k × k matrix of eigenvectors of Λ+ Ξ

Λ+ Ξ = V Y V −1

normalized such that it is a stochastic matrix (it is proved below that this is indeed
possible): ∑

i

Vi,j =
∑

j

Vi,j = 1.

Then:
• eigenvalue of Ai : λi
• eigenvalue of A : λ =

∑
i xiλi

• eigenvalue of M : µ = 1− t
Nc

∑
i,j

Vi,j

(ξ−xi)(η−yj )
.

• eigenvalue of Mi,j : µi,j = − t
Nc Vi,j

where Mi,j = Res ξ→xi Res η→yj M.

proof:
Let v = (vπ) be a common eigenvector. Let us define the k × k matrix

Vi,j =
∑

π |π(i)=j

(−1)π vπ.

It satisfies: ∑

i

Vi,j =
∑

j

Vi,j =
∑

π

(−1)π vπ = et.v

where e is the vector eπ = (−1)π.
Notice that when N is large, or vice equivalently, when the xi’s and yi’s are large

compared to t/Nc, the matrices A and Ai’s are almost diagonal, with distinct eigen-
values. In this regime, the eigenvectors v tend to the basis vectors, i.e. only one
component vπ is non-vanishing, i.e. et.v → (−1)πvπ *= 0.

Moreover, the eigenvectors are algebraic functions of the xi’s and yi’s, and thus et.v
is an algebraic function, and it doesn’t vanish in this regime, so it doesn’t vanish for
generic values of xi’s and yi’s.

We can thus chose to normalize our eigenvector v, for generic values of xi’s and yi’s,
so that the matrix V is not identically vanishing, and so that:

et.v = 1.

The equation Ai v = λiv implies:

∀ i, j , λiVi,j +
∑

l (=i

t

Nc(xi − xl)
Vl,j = yj Vi,j

If we define Λ = diag(λ1, . . . ,λk) and Y = diag(y1, . . . , yk), and Ξi,j = t
Nc(xi−xj)

and
Ξi,i = 0 we have

(Λ+ Ξ) V = V Y.
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If V would be invertible that would mean that the yi’s are the eigenvalues of Λ+ Ξ:

det(y − Λ− Ξ) =
k∏

i=1

(y − yi),

or
∀ i , det(yi − Λ− Ξ) = 0.

In other words, we have the yi’s as functions of the λi’s and xi’s. We can invert those
relations and deduce the λi’s as algebraic functions of the yi’s and xi’s.

Let Ỹ = (ỹ1, . . . , ỹk) be the eigenvalues of Λ + Ξ, and let Ṽ be a matrix whose
columns are a basis of eigenvectors of Λ+Ξ. By definition the matrix Ṽ of eigenvectors
is invertible. The eigenvectors are defined up to a scalar factor, i.e. Ṽ is defined up to
right multiplication by an invertible diagonal matrix. For generic choices of xi’s and
yi’s, we may normalize Ṽ so that:

∀ j ,
∑

i

Ṽi,j = 1.

We thus have, by definition:

Λ+ Ξ = Ṽ Ỹ Ṽ −1.

Multiplying by V on the right, and by Ṽ −1 on the left, we get:

Ỹ Ṽ −1V = Ṽ −1V Y,

and Y and Ỹ are both diagonal matrices. Let C = Ṽ −1V , we have:

∀ i, j , Ci,j (ỹi − yj) = 0.

This implies that either Ci,j = 0, or ỹi = yj. Moreover we have, by our choices of
normalization, that

∀ j ,
∑

i

Ci,j = 1

so that for each j there must exist some i with Ci,j *= 0, and thus there must exist
some i with ỹi = yj. If the yj’s are all distinct, then there is at most one ỹi equal to yj
for each j, and thus Ci,j = 0 for all the others. Up to reordering the eigenvalues of Ỹ ,
we may chose that ỹi = yi, and C must be diagonal, and since

∑
iCi,j = 1, we must

have C = Id:
Ỹ = Y , V = Ṽ .

This proves in particular that V is invertible (for generic values of xi’s and yi’s).
So we have proved that V is the matrix of eigenvectors of Λ+Ξ, and can be chosen

to be stochastic.

Then, if we write

M(x1, . . . , xk; y1, . . . , yk; ξ, η) = Id +
∑

i,j

1

(ξ − xi) (η − yj)
Mi,j(x1, . . . , xk; y1, . . . , yk)
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where

Mi,j(x1, . . . , xk; y1, . . . , yk) = Res
ξ→xi

Res
η→yj

M(x1, . . . , xk; y1, . . . , yk; ξ, η)

Let us call µ the eigenvalue of M and µi,j the eigenvalues of Mi,j for the eigenvector
v.

M(x1, . . . , xk; y1, . . . , yk; ξ, η) v = µ v , Mi,j(x1, . . . , xk; y1, . . . , yk) v = µi,j v

we have:
µ = 1 +

∑

i,j

µi,j

(ξ − xi)(η − yj)
.

Let us multiply on the left by the vector e of components eπ = (−1)π, we get

etM v = µ etv.

Let us compute etM:

(et M)π =
∑

π′

(−1)π
′
∏

i

(
δπ′(i),π(i) −

t

Nc

1

(ξ − xi)(η − yπ′(i))

)

= det

(
δj,π(i) −

t

Nc

1

(ξ − xi)(η − yj)

)

= (−1)π det

(
δi,j −

t

Nc

1

(ξ − xi)(η − yπ(j))

)

Notice that the matrix inside the determinant is of the form Id − ABt, where A and
B are vectors, we have:

det(I−ABt) = 1− BtA,

and thus

(et M)π = (−1)π
(

1− t

Nc

∑

i

1

(ξ − xi)(η − yπ(i))

)

,

and then, taking the residue at ξ = xi and η = yj gives

(etMi,j)π = − t

Nc
(−1)π δπ(i),j .

Multiplying Mi,jv = µi,jv by et on the left thus gives

− t

Nc
Vi,j = µi,j e

t.v = µi,j .

In that case, we have that the eigenvalue of Mi,j is µi,j = − t
Nc Vi,j.

Mi,j v = − t

Nc
Vi,j v.

This ends the proof of the theorem.
!
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Corollary 4.2 Since the matrices H(x1, . . . , xk; y1, . . . , yk) commute with M’s, they
must have the same basis of eigenvectors. Let Vπ,ρ be a matrix whose columns are
eigenvectors normalized so that:

V tV = Id

(which is possible since all our matrices are symmetric), and so that

Ve = e , etV = et

where e is the vector eπ = (−1)π.
We thus may write:

Hπ,π′(x1, . . . , xk; y1, . . . , yk) =
∑

ρ

Vπ,ρ Vπ′,ρ Hρ(x1, . . . , xk; y1, . . . , yk)

where the Hρ(x1, . . . , xk; y1, . . . , yk)’s are the eigenvalues of H(x1, . . . , xk; y1, . . . , yk),
indexed by a permutation ρ.

This can also be written as:

H = V tH V is diagonal.

4.2 Planar discs

Here we restrict ourselves to the g = 0 planar case, and also to the case where we
have only one boundary, i.e. π′−1 ◦ π has only one cycle, and up to renaming the
variables, we can always choose π = Idk and π′ as the shift π′(i) = i − 1mod k, i.e.
π′ = (1 → k → k − 1 → k − 2 → . . . → 2 → 1). Our goal in this section is to compute
explicitly all the generating functions

H(0)
Idk ,(1→2→...→k→1)(x1, . . . , xk; y1, . . . , yk).

This is achieved by the following theorem, and it uses the knowledge of the spectral
curve E(x, y) = 0, which we have written parametrically in section 3 above as x =
x(z), y = y(z), or in theorem 3.2:

Theorem 4.5 for k = 1

H(0)
Id1,Id1

(x(z); y(z′)) =
−1

c

E(x(z), y(z′))

(x(z)− x(z′)) (y(z)− y(z′))
, (VIII-4-6)

and for k > 1:

H(0)
Idk,(1→2→...→k→1)(x1, . . . , xk; y1, . . . , yk)

=
∑

σ

Cσ(x1, . . . , xk; y1, . . . , yk)
k∏

i=1

H(0)
Id1,Id1

(xi; yσ(i)) (VIII-4-7)

where the coefficients Cσ(x1, . . . , xk; y1, . . . , yk) are some universal rational functions
(defined further below) of the xi’s and yi’s, they are independent of the parameters tk’s
and c±,±.
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Again, the proof of this theorem is very technical and far from straightforward, and
we refer the motivated reader to []. Eq.(VIII-4-7) can also be derived from theorem
4.3.
proof:

Let us first prove eq.(VIII-4-6) by using Tutte’s method again.
Recall that we have computed the generating function (see def.2.2)

U (0)
0 (x, y) = −V ′

2(y) + cx−
d̃∑

j=2

j−2−k∑

k=0

G(0)
0,k(x)

which counts planar maps with 1 mixed boundary, made of a − boundary of length k
and a + boundary of arbitrary length weighted by x−1−length, and in eq.(VIII-3-1) we
have found:

U (0)
0 (x, y) =

E(x, y)

c(y − Y (x))
.

Then, consider a planar Ising map with a unique marked face with (+,−) boundary
with arbitrary lengths.

Chose the first − edge on the boundary, and we shall erase it. Several possibilities
may occur:

• on the other side of the removed edge, we have a j gon of sign −

- - -

-

++++++

+

+
+

+
+

-
-

-- -
-

++
+

+ +
+ + +

- -
--

+

- - -

-

++++++

+

+
+

+
+

- -

-- -
-

++
+

+ +
+ + +

- -
--

+

then the corresponding term in Tutte equation will be:

by(c+H(0)
1,1(x; y)) =

∑

j

t̃jy
j−1(c+H(0)

1,1(x; y)) + other possibilities

Notice that erasing the edge can be done only if the length is positive, i.e. if the power
of y is strictly negative, which we can write

b
(
yH(0)

1,1(x; y)
)

−
=

(
∑

j

t̃jy
j−1H(0)

1,1(x; y)

)

−

+ other possibilities

Recall that by definition of V ′
2

by −
∑

j

t̃jy
j−1 = V ′

2(y),

and observe that the positive powers of y in V ′
2(y)H

(0)
1,1(x; y) is precisely the definition

eq.(VIII-2-3) in section 2.1 of U (0)
0 (x, y) + cV ′

2(y)− c2x:
(
V ′
2(y)(c+H(0)

1,1(x; y))
)

+
= U (0)

0 (x, y) + cV ′
2(y)− c2x,

340



and thus the equation is

V ′
2(y)(c+H(0)

1,1(x; y)) = U (0)
0 (x, y) + cV ′

2(y)− c2x+ other possibilities

• on the other side of the removed edge, we have a bicolored (+−) face, i.e. after
removing the edge, we get an edge of sign +,

- - -

-

++++++

+

+
+

+
+ -

-- -
-

++
+

+ +
+ + +

- -
--

+

+ - -

-

++++++

+

+
+

+
+ -

-- -
-

++
+

+ +
+ + +

- -
--

+

+
+

the corresponding term in Tutte equation will be:

b
(
y(c+H(0)

1,1(x; y))
)

−
= c

(
x (c+H(0)

1,1(x; y))
)

−
+ other possibilities

where in the right hand side we need to keep only strictly negative powers of x. Notice
that the positive powers of x in xH(0)

1,1(x; y) give W̃ (y) = V ′
2(y)− cX(y), and thus we

get

(
by(c+H(0)

1,1(x; y))
)

−
= cx (c+H(0)

1,1(x; y))− c(V ′
2(y)− cX(y)) + other possibilities

• on the other side of the removed edge, we have the same face

-
-

-

-
++

+

+ +
+

+

- -- -
-

+
+

+ +
- -
--

+
+
-
-

-
-

-

-
++

+

+ +
+

+

- -- -
-

+
+

+ +
- -
--

+
+

then the corresponding term in Tutte equation will be:

(
by(c+H(0)

1,1(x; y))
)

−
= W̃ (y) (c+H(0)

1,1(x; y)) + other possibilities

= (V ′
2(y)− cX(y)) (c+H(0)

1,1(x; y)) + other possibilities

Finally, putting all possibilities together we get

V ′
2(y) (c+H(0)

1,1(x; y)) = U (0)
0 (x, y) + cV ′

2(y)− c2x

+cx (c+H(0)
1,1(x; y))− c(V ′

2(y)− cX(y))

+(V ′
2(y)− cX(y)) (c+H(0)

1,1(x; y))

many terms cancel and it remains

c(X(y)− x))H(0)
1,1(x; y) = U (0)

0 =
E(x, y)

y − Y (x)
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This proves the first part of the theorem.

Then we use:
[H,A1]π,π′ = 0

with π = Idk and π′ = Sk. This gives:

Nc

t
(y1 − yk)HIdk,Sk

(x1, . . . , xk; y1, . . . , yk)

=
∑

j (=1

1

x1 − xj

(
H(1,j),Sk

(x1, . . . , xk; y1, . . . , yk)−HIdk,Sk(1,j)(x1, . . . , xk; y1, . . . , yk)
)

and keep only planar terms:

HIdk,Sk
(x1, . . . , xk; y1, . . . , yk) →

N

t
Ĥ(0)

Idk,Sk
(x1, . . . , xk; y1, . . . , yk)

and

H(1,j),Sk
(x1, . . . , xk; y1, . . . , yk) → N2

t2
Ĥ(0)

Idj−1,Sj−1
(xj , x2, . . . , xj−1; y1, . . . , yj−1)

Ĥ(0)
Idk+1−j ,Sk+1−j

(x1, xj+1, . . . , xk; yj, . . . , yk)

and

HIdk,Sk◦(1,j)(x1, . . . , xk; y1, . . . , yk) → N2

t2
Ĥ(0)

Idj−1,Sj−1
(x2, . . . , xj ; y2, . . . , yj)

Ĥ(0)
Idk+1−j ,Sk+1−j

(x1, xj+1, . . . , xk; y1, yj+1, . . . , yk)

c (yk − y1) Ĥ
(0)
Idk,Sk

(x1, . . . , xk; y1, . . . , yk)

=
∑

j (=1

1

x1 − xj

(
Ĥ(0)

Idj−1,Sj−1
(x1, . . . , xj−1; y1, . . . , yj−1) Ĥ(0)

Idk+1−j ,Sk+1−j
(xj , . . . , xk; yj, . . . , yk)

−Ĥ(0)
Idj−1,Sj−1

(xj , x2, . . . , xj−1; y1, . . . , yj−1) Ĥ(0)
Idk+1−j ,Sk+1−j

(x1, xj+1, . . . , xk; yj, . . . , yk)
)

This can be illustrated as:

c(yk − y1) =
∑

j

1

x1 − xj
−

We see that at each step we split the set of variables {xi}’s and {yi}’s into disjoint
subsets, by drawing two arcs, which split the circle into two circles. The 2 arcs can
never cross.
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By an easy recursion, we shall eventually split the circle by a set of arcs, in order
to reach only circles of length 2, i.e. a product of Ĥ(0)

1,1(xi; yσ(i)) with σ a permutation.
Moreover, σ must be a “planar” permutation, i.e. it draws a link pattern on the circle,
which can never cross itself.

Therefore there exists some coefficients Cσ’s which are rational functions of the xi’s
and of the yi’s, such that

Ĥ(0)
Idk,Sk

(x1, . . . , xk; y1, . . . , yk) =
∑

σ∈Sk

Cσ(x1, . . . , xk; y1, . . . , yk)
k∏

i=1

Ĥ(0)
1,1(xi; yσ(i)).

where Cσ = 0 if σ is not planar.
The coefficients Cσ satisfy the recursion:

Cσ(x1, . . . , xk; y1, . . . , yk) =
1

c (yk − y1)

k∑

j=2

Cσ(x1, . . . , xk; y1, . . . , yk)Cσ(x1, . . . , xk; y1, . . . , yk)

This ends the proof. The coefficients Cσ are computed below. !

• Example k = 2:

Ĥ(0)
Id2,S2

(x1, x2; y1, y2) =
Ĥ(0)

1,1(x1; y1) Ĥ(0)
1,1(x2; y2)− Ĥ(0)

1,1(x1; y2) Ĥ(0)
1,1(x2; y1)

c y21x12

• Example k = 3:

Ĥ(0)
Id3,S3

(x1, x2, x3; y1, y2, y3)

=
Ĥ(0)

1,1(x1; y1) Ĥ
(0)
Id2,S2

(x2, x3; y2, y3)− Ĥ(0)
1,1(x2; y1) Ĥ

(0)
Id2,S2

(x1, x3; y2, y3)

c x12 y31

+
Ĥ(0)

Id2,S2
(x1, x2; y1, y2) Ĥ

(0)
1,1(x3; y3)− Ĥ(0)

Id2,S2
(x3, x2; y1, y2) Ĥ

(0)
1,1(x1; y3)

c x13 y31

which gives:

c2 Ĥ(0)
Id3,S3

(x1, x2, x3; y1, y2, y3)

= Ĥ(0)
1,1(x1; y1) Ĥ

(0)
1,1(x2; y2) Ĥ

(0)
1,1(x3; y3)

1

x12y31

(
1

x23y32
+

1

x13y21

)

+Ĥ(0)
1,1(x1; y3) Ĥ

(0)
1,1(x2; y1) Ĥ

(0)
1,1(x3; y2)

1

x13y31

(
1

x12y32
+

1

x32y21

)

+Ĥ(0)
1,1(x1; y1) Ĥ

(0)
1,1(x2; y3) Ĥ

(0)
1,1(x3; y2)

1

x12x23y23y31

+Ĥ(0)
1,1(x1; y3) Ĥ

(0)
1,1(x2; y2) Ĥ

(0)
1,1(x3; y1)

1

x13x32y21y13

+Ĥ(0)
1,1(x1; y2) Ĥ

(0)
1,1(x2; y1) Ĥ

(0)
1,1(x3; y3)

1

x21x13y32y21
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The planar link patterns and the coefficients Cσ

In the planar case, the boundary generating functions are thus of the form:

Ĥ(0)
Idk,Sk

(x1, . . . , xk; y1, . . . , yk) =
∑

σ∈Sk

Cσ(x1, . . . , xk; y1, . . . , yk)
k∏

i=1

Ĥ(0)
1,1(xi; yσ(i)).

The coefficients Cσ satisfy a recursion relation. The explicit solution of this recur-
sion was found in [], and we just mention the result.

The coefficients Cσ are determined as follows (we recall that π = Idk and π′ = Sk is
the shift π′(i) = i− 1 mod k, and ((σ) denotes the number of cycles of a permutation
σ):

• Cσ vanishes if ((σ−1 ◦ π) + ((σ−1 ◦ π′)− ((π′−1 ◦ π) *= k:

Cσ *= 0 ⇒ ((σ−1 ◦ π) + ((σ−1 ◦ π′)− ((π′−1 ◦ π) = k (VIII-4-8)

This means that σ must be a planar link pattern drawn on the cycles of π′−1 ◦ π:

σ (k)

y1

y

x
k

2

x2

1x

ky

x

• If condition eq.(VIII-4-8) is satisfied, we decompose the cycles of σ−1 ◦ π and
σ−1 ◦ π′ as follows:

σ−1 ◦ π =
m∏

i=1

σi , σ−1 ◦ π′ =
m′∏

i=1

σ̄i
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In other words, each σi or σ̄i is a face of the link pattern.

x

y

3
y3 x

4 y

12

x1

y

2x
2

4

x
10

y10

x
11

y11

x
12

5

8y 99

x
5

y

x
6

y6

x
7

y7

x
8

y
x

1y

3

σ5

σ

∼

6

σ
1

1
σ

2σ

4σ

σ

∼

σ

6
∼σ

7
σ

5
∼σ

4
∼

3
∼σ

2
∼σ

If j is in a cycle σi of σ−1 ◦ π, the face is

xj → yπ(j) → xσi(j) → yπ(σi(j)) → xσi(σi(j)) → . . . → yσ−1(j) → xj

and we prefer to write σi as the ordered set of variables:

σi ≡ (xj , yπ(j), xσi(j), yπ(σi(j)), xσi(σi(j)), . . . , yσ−1(j))

Similarly for σ̄i, we write

σ̄i ≡ (xj , yπ′(j), xσ̄i(j), yπ′(σ̄i(j)), xσ̄i(σ̄i(j)), . . . , yσ−1(j))

With those notations, we shall write Cσ as a product of faces:

Cσ =
m∏

i=1

F#(σi)(σi)
m′∏

i=1

F#(σ̄i)(σ̄i).

The “face” functions Fk(x1, y1, x2, y2, . . . , xk, yk) are defined by the following recursion:

F1(x, y) = 1

and

Fk(x1, y1, . . . , xk, yk) =
k−1∑

j=1

Fj(x1, y1, . . . , xj, yj)Fk−j(xj+1, yj+1, . . . , xk, yk)

c (x1 − xk) (yk − yj)

They have the property to be cyclically invariant.

For instance for k = 2 we get

F2(x1, y1, x2, y2) =
1

c (x1 − x2) (y2 − y1)
.

In fact, it is possible to write the functions Fk’s as sums over trees, this was done
in [], and we refer the interested reader to that article.

345



5 Summary: Ising model

Let us summarize the concepts introduced in this chapter:

• The Ising model is the combinatorics of bi-colored maps (colors = + and −, also
called spin), conditionned on the number of edges separating faces of same or
different colors.

We attach Boltzman weights tk for the number of k−gons of color +, t̃k for the
number of k−gons of color −, and c++ for ++ edges, c−− for −− edges, and c+−
for +− edges. We define c = c+−/(c++c−− − c2+−), a = c−−/(c++c−− − c2+−),
b = c++/(c++c−− − c2+−).

These define the potentials:

V1(x) = ax−
∑

k≥3

tk
k
xk

V2(y) = by −
∑

k≥3

t̃k
k
yk

• One can write Tutte equations by recursively erasing the marked edge of the first
marked face.

• The disc amplitude W (0)
1 (x) is an algebraic function, we define Y (x) = 1

c (V
′
1(x)−

W (0)
1 (x)). It satisfies an algebraic equation:

E(x, Y ) = 0

where E(x, y) is a polynomial of its 2 variables, of degree d1 = deg V1 in x and
d2 = deg V2 in y.

E(x, y) = (V ′
1(x)− cy)(V ′

2(y)− cx)− 1

c
P (0)
0 (x, y) + tc

where P (0)
0 (x, y) is a polynomial of degree at most deg V ′′

1 in x and deg V ′′
2 in y.

The polynomial P (0)
0 (x, y) is uniquely determined by requiring that the algebraic

equation E(x, y) = 0 defines a Riemann surface of genus 0, and by P (0)
0 (x, y) =

V ′
1(x)
x

V ′
2(y)
y +O(t)

Since the algebraic equation has genus zero, one can find a parametric solution
with rational functions:

{
x = x(z) = γz +

∑deg V ′
2

k=0 αkz−k

Y = y(z) = γz−1 +
∑deg V ′

1
k=0 βkzk
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and the coefficients γ, αk, βk’s are uniquely determined by requiring that

V ′
1(x(z)) − cy(z) ∼

z→∞

t

γz
+O(z−2)

V ′
2(y(z))− cx(z) ∼

z→0

t z

γ
+O(z2),

and by γ2 = O(t).

The disc amplitude is then:

W (0)
1 (x(z)) = V ′

1(x(z)) − cy(z).

• The cylinder amplitude W (0)
2 .

In the z variables (i.e. writing xi = x(zi)), we have:

W (0)
2 (x1, x2) =

1

(z1 − z2)2 x′(z1) x′(z2)
− 1

(x1 − x2)2
.

The differential form:

B(z1, z2) = W (0)
2 (x1, x2)dx1d2 +

dx1dx2

(x1 − x2)2
=

dz1dz2
(z1 − z2)2

is called the fundamental 2nd kind differential.

The cylinder amplitude is thus universal, in the z variables it is always the fun-
damental 2nd kind differential.

• Higher topology amplitudes are given by the topological recursion.

• We also find algebraic formulae for enumerating maps with multi-colored bound-
aries.

6 Exercises

Exercise 1: For Ising quadrangulations (only t4 and t̃4 non vanishing), count elements

of M(0)
0 (2) and M

(0)
0 (3), i.e. Ising quadrangulations with 1 boundary (of color +), and

with 2 and 3 vertices.
Answer:

W (0)
1 =

t

x
+ t3

(
2c2++

x5
+

2t4c3++ + 2t̃4c2+−c−−

x3

)
+O(t4)
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Exercise 2: For Ising quadrangulations (only t4 and t̃4 non vanishing), find the
disc amplitude. Write the parametrization:

x(z) = γz + α1z
−1 + α3z

−3,

y(z) = γz−1 + β1z + β3z
3.

Find that the algebraic equation satisfied by γ2 is of degree 5:

t =
aγ2

c

b− 3at̃4
γ2

c

1− 9t4t̃4
γ4

c2

− cγ2
(
1− 3t4t̃4

γ4

c2

)
− 3t4

γ4

c2

(
b− 3at̃4

γ2

c

1− 9t4t̃4
γ4

c2

)2

Consider the special case where t4 = t̃4, a = b and c = 1. In that case we shall have
α1 = β1 and α3 = β3. Find the equation for γ2:

t =
a2γ2

1 + 3t4γ2
− γ2

(
1− 3t24γ

4
)
− 3a2t4γ4

(1 + 3t4γ2)2
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