
Chapter V

Counting large maps

Initially, in quantum gravity and string theory, the problem of counting maps, i.e.
surfaces made of polygons, was introduced only as a discretized approximation for
counting continuous surfaces. The physical motivation is the following: in string the-
ory, particles are 1-dimensional loops called strings, and under time evolution their
trajectories in space-time are surfaces. Quantum mechanics amounts to averaging over
all possible trajectories between given initial and final states, i.e. all possible surfaces
between given boundaries. However, trajectories should be counted only once modulo
their symmetries, in particular conformal reparametrizations, in other words, trajec-
tories are in fact Riemann surfaces (equivalence class of surfaces modulo conformal
reparametrizations).

The set of all Riemann surfaces with a given topology and given boundaries, is
called the moduli space, and string theory amounts to ”counting” Riemann surfaces,
i.e. measuring the ”volume” of the moduli space.

Physicists made the guess that in some appropriate limit, the counting function
of discrete surfaces (maps) should tend towards the counting function of Riemann
surfaces. In some sense, surfaces made of a very large number of very small
polygons should be a good approximation of Riemann surfaces in quantum
gravity !

?

In this chapter, we are going to explain how to find the asymptotic generating
functions of large maps, and then compare with Liouville conformal field theory of
quantum gravity, and in the next chapter we are going to compare it to the enumeration
of Riemann surfaces.
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1 Introduction to large maps and Double scaling
limit

The idea is to count maps made of a very large number of polygons, and send the size
of polygons (the mesh) to zero so that the average area remains finite.

1.1 Large size asymptotics and singularities

Let us start with general considerations about large order behaviors.
It is a standard knowledge that there is a relationship between the large order be-

havior of a sequence, and singularities of the corresponding generating series. Consider
a sequence {Ak}k∈N, and the formal series:

A(t) =
∞∑

k=0

Ak t
k.

Imagine that A(t) is convergent in a disc |t| < |tc|, for instance assume that it is an
algebraic function of t (which is indeed the case for generating functions for maps).

The basic example is:

A(t) = C (tc − t)−α = C t−αc

∞∑

k=0

Γ(k + α)

k!Γ(α)
(t/tc)

k

The large order behavior is obtained from Stirling’s asymptotic formula:

Ak = C t−α−k
c

Γ(k + α)

k!Γ(α)
∼

k→∞
C

t−αc

Γ(α)
t−k
c kα−1 (V-1-1)

More generally, if A(t) is an analytical function with several algebraic singularities
tc1, tc2, tc3, . . . with exponents α1,α2,α3, . . ., the large order behavior of Ak is dominated
by the singularity(ies) tci closest to the origin, those for which |tci| is minimal.

Ak ∼
k→∞

∑

|tci|=min{|tcj |}

Ci
t−αi
ci

Γ(αi)
t−k
ci kαi−1

Conversely, if a sequence Ak has a large order behavior of type eq.(V-1-1) with α
rational, then its generating series A(t) has a singularity of algebraic type.

There is also an intuitive approach to understand the link between singularities and
large order behaviors. The expectation value of k is:

< k >=

∑
k k Ak tk∑
k Ak tk

=
t A′(t)

A(t)

thus, if we want large values of k to dominate the expectation values, i.e. if we want
< k > to become very large, we need to choose t such that tA′/A diverges, that is we
need to choose t close to a point where lnA(t) is not analytical.
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A weaker statement would be to require that some moment of k diverges, for in-
stance:

< kp >=
1

A(t)

∑

k

kp Ak t
k =

1

A(t)

(
t
d

dt

)p

A(t)

In other words we want to choose t = tc such that some derivative of A(t) diverges.

Let us now illustrate those general considerations on some examples.

1.2 Example: quadrangulations

The generating function of quadrangulations of genus g with n4 quadrangular unmarked
faces, and thus v = n4 + 2− 2g vertices is:

Fg(t4) = t2−2g
∑

n4

(t t4)
n4

∑

Σ∈M(g)
0 (n4+2−2g)

1

#Aut(Σ)
.

The average number of faces is thus:

< n4 >= t4
∂ lnFg

∂t4
=< v > +2g − 2 = t

∂ lnFg

∂t
+ 2g − 2

where < v > is the average number of vertices.
In order to have < n4 > or < v > very large, one must chose t in the vicinity of

a singularity of Fg. We have seen in chapter III, that all the Fg’s (except F0 and F1)

are rational fractions of γ2 = 1−
√
1−12tt4
6t4

, and thus Fg is singular when γ2 is singular,

that is at t = tc = 1/12 t4. For instance, with the notation r =
√
1− 12tt4, we have

according to eq.(III-6-1), eq.(III-6-2) and eq.(III-6-3)):

F0 =
t2

2

(
1

3(1 + r)2
− 5

3(1 + r)
+

3

4
− ln

1 + r

2

)

=
t2

2

(
ln 2− 1

3
− 4tt4 + 36t2t24

)
− 4

15
t2 (1− t/tc)

5/2 +O((1− t/tc)
3),

F1 =
1

12
ln

1 + r

2r
= − 1

24
ln (1− 12tt4)−

ln 2

12
+O((1− t/tc)

1/2),

F2 = t−2

(
−89r5 + 20r4 + 130r3 − 100r2 − 65r + 56

5 ∗ 9 ∗ 28 r5 − B4

8

)

=
7

10 (12 tc)2
(1− t/tc)

−5/2 +O(1− t/tc)
−2

Below, we will prove in theorem 3.1 that in general, for quadrangulations, Fg is
singular at t = tc = 1/12 t4, and behaves (for g ≥ 2) like:

Fg ∼ F̃g t2−2g
c (1− t/tc)

5
4 (2−2g) + . . . subleading

155



the constant prefactor F̃g is called the ”double scaling limit” of Fg, and our main
goal from now on, is to compute it, not only for quandrangulations, but for all sorts of
maps. We address that problem below, and the answer is given in theorem 3.1.

For F1 and F0, to leading order at t → tc, only the derivatives diverge as a power
law:

∂3F0

∂t3
=

1

2 tc
(1− t/tc)

−1/2 + o((1− t/tc)
−1/2)

∂F1

∂t
=

1

24 tc
(1− t/tc)

−1 + o((1− t/tc)
−1)

Let us compute 2 ug = singular part of ∂2Fg/∂t2, we have

u0 = − 1

2
, u1 =

1

48 t2c
, u2 =

49

32 ∗ 28 t4c
, . . .

for g ≥ 2 , ug =
F̃g

t2gc

5

4
(2− 2g) (

5

4
(2− 2g)− 1),

and define the formal series

u(s) =
∑

g

ugt
2g
c s(1−5g)/2 = − 1

2
s1/2 +

1

48
s−2 +

49

32 ∗ 28
s−9/2 + . . .

The values which we have found for u0, u1, u2 indicate that u(s) seems to satisfy the
Painlevé I equation to the first few orders

3u2 + u′′/2 =
3

4
s+O(s−13/2).

Our goal in this chapter, is to prove that indeed u(s) satisfies Painlevé I equation to
all orders:

3u2 + u′′/2 =
3

4
s.

This Painlevé equation determines all the coefficients ug, and thus F̃g, i.e. it gives the
asymptotic numbers of large maps.

The Liouville minimal model of conformal field theory coupled to quantum grav-
ity, predicts that the generating function of ”number of surfaces”, should satisfy the
Painlevé I equation, so what we find is an agreement between the asymptotic number
of large maps, and the Liouville conformal field theory of gravity.

Mesh size

The average number of quadrangles is < n4 >= t4
∂ lnFg

∂t4
, and thus, if we say that all

quadrangles have the same area ε2 (we call mesh size the side of each quadrangle, that
is ε), the average area is:

< Area >= ε2 < n4 >∼ 5

4
(2− 2g)

ε2

t
tc
− 1
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If we want to have a good continuous limit of random surfaces, we require the area to
remain finite, and it means that we should choose:

ε2 ∼ tc − t

Therefore, the distance to critical point tc − t can be interpreted as the mesh area, i.e.
the area of elementary quadrangles.

1.3 About double scaling limits and Liouville quantum gravity

Origin of the name “double scaling limit”

Remember that we have defined lnZ =
∑

g N
2−2g Fg, where Z is the generating func-

tion of all maps of all genus not necessarily connected. Anticipating on theorem 3.1, we
notice that Fg ∼ F̃g t2−2g

c (1− t/tc)(2−2g)µ with the exponent of (1− t/tc) proportional
to 2− 2g. Thus, it is possible to define a rescaled parameter Ñ = N tc (1− t/tc)µ, and
a series:

ln Z̃ =
∞∑

g=0

Ñ2−2g F̃g

such that Z̃ is the ”limit” of Z, in the ”double scaling limit” (double because we take
a limit on both N and t):

{
t → tc
N → ∞ N tc (1− t/tc)

µ = Ñ = finite −→ Z ∼ Z̃.

This double scaling limit Z̃ is to be viewed as the generating series of the continuous
limit of maps.

From large maps to Liouville gravity

F̃g is the generating function of asymptotic numbers of large maps of genus g, rescaled
by a power of the mesh size.

In a similar manner, one is also interested in the double scaling limits of W (g)
n ’s

counting asymptotic numbers of large maps of genus g with n asymptotically large
marked faces.

The guess made by physicists working in quantum gravity in the 80’s and 90’s, was
that those double scaling limit generating functions F̃g and W̃ (g)

n , should coincide with
correlation functions of Liouville conformal field theory coupled to gravity. This guess
was supported by heuristic asymptotics of convergent matrix integrals, hoped to be
valid for formal integrals.

On the conformal field theory side, due to conformal invariance, the correlation
functions of a conformal field theory, must have the symmetry of some representations
of the conformal group, that is they are given in terms of representations of the Virasoro
algebra.

Finite representations of the conformal group were classified (in the famous Kacs
table [27]) and are called minimal models, they are labeled by 2 integers (p, q). For
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the minimal models, the partial differential equations imply that the partition function
has to satisfy a non-linear ordinary differential equation. For example, the minimal
model (3, 2) is called pure gravity, and its generating function satisfies the Painlevé I
equation.

The minimal models are also related to finite reductions of the KP (Kadamtsev-
Petiashvili) integrable hierarchy.

If the asymptotics generating functions F̃g of large maps were related to Liouville
gravity, that would mean that Z̃ would be a tau-function for the KP (Kadamtsev-
Petviashvili) hierarchy of integrable equations, and in particular Z̃ should satisfy some
non-linear differential equations with the Painlevé property. We shall derive these
differential equations below in section 4.

Thus, in principle, if we want to compare large maps to Liouville quantum gravity,
we have to check that the generating function of the F̃g and W̃ (g)

n ’s, satisfy the differ-
ential equations of some (p, q) minimal model. In particular, we have to check that Z̃
is indeed the tau-function of a minimal model reduction of the KP hierarchy

Z̃
?
= Tau− function of (p, q) reduction of KPhierarchy.

We also have to check that the scaling exponents of large maps, are those computed
by KPZ (Khniznik Polyakov Zamolodchikov) [56]

KPZ exponent γ =
−2

p+ q − 1
, Fg

?∼ F̃g (1− t/tc)
(2−2g)(1−γ/2).

All this was done at a heuristic level by physicists in the 90’s. We provide a
mathematical proof below in this chapter.

2 Critical spectral curve

Here we study what special happens at t = tc ? Why generating functions diverge ?

2.1 Spectral curves with cusps

In chapter III, we have seen that the Fg’s for g ≥ 2 are rational fractions of α and γ2 (F0

and F1 also contain logarithms of rational fractions of α and γ2). α and γ themselves
are obtained by solving an algebraic equation, and thus they may have singularities.
One can compute (see theorem 4.5 section III.4.3):

dγ

dt
=

1

4

(
1

y′(1)
+

1

y′(−1)

)

and y′(1) and y′(−1) are themselves algebraic functions of t. Therefore we see that γ is
singular whenever y′(1) = 0 or y′(−1) = 0. Without loss of generality, let us consider
that y′(1) vanishes at t = tc.

We are thus led to study the behavior of y(z) near z = 1. For any t, let us compute
the Taylor expansion of x(z) and y(z) at z = 1.
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Since x(z) = α+ γ(z+1/z) we always have x′(1) = 0, and to the order (z− 1)2 we
have

x(z) ∼ x(1) + γ(z − 1)2 +O((z − 1)3),

and thus

z − 1 ∼
√

x− a

γ
.

And y(z) ∼ (z− 1)y′(1)+ 1
2(z− 1)2y′′(1)+ 1

6(z− 1)3y′′′(1)+ . . .. Generically y behaves
like a square root near its branchpoints:

y ∼ y′(1)

√
x− a

γ
+O((x− a)

3
2 )

At t = tc, however, since y′(1) vanishes, y no longer behaves as a square root, it has a
cusp singularity of the form y ∼ (x− a)3/2, and if more derivatives of y vanish, it has
a cusp singularity of the form:

y ∼ (x− a)p/q.

Here, for maps, y is always the square root of some polynomial, so that p/q must be
half–integer, i.e. q = 2 and p = 2m+1 where m corresponds to the first non-vanishing
derivative of y at z = 1, that is y(z) ∼ O((z − 1)2m+1).

Remark 2.1 In more general maps, for instance colored maps carrying an Ising model (see
chapter VIII), or a O(n) model, other exponents p/q are possible. The Ising model allows to
reach any rational p/q singularity. The O(n) model allows to reach all p/q singularities (not
necessarily rational) such that n = −2 cos (pqπ).

The integers p and q are going to be related to the (p, q) minimal model.

If t is close to tc, the curve y(x) is not singular, but it approaches a singularity.
So, let us zoom into a small region near the branchpoint.

~

c ~ ct t

y

x

y

x
x

y~

t=t

For example, consider that the branchpoint which becomes singular is the one at
z = 1 (in case both branchpoints become singular there are extra factors of 2 in some
formulae, this is the case for even maps).
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Example: quadrangulations

If one plots the spectral curve y versus x, one sees that at t (= tc, the curve (x, y) is
regular, it behaves generically like a square root near its branch points x = ±2γ, it has
everywhere a tangent (at the branchpoints the tangent is vertical). At t = tc =

1
12t4

:
the curve (x, y) ceases to be regular, it has a cusp singularity, it has no tangent at
z = 1. Indeed, we have (from eq.(III-1-15)):

y = −t4
2

(x2 − 4γ2 + 3γ2
γ2 − 2t

γ2 − t
)
√
x2 − 4γ2 , γ2 =

1−
√
1− 12tt4
6t4

At t = tc = 1/12t4 we have γ2 = 2t and thus:

t = tc ⇒ y = −t4
2

(x2 − 8t)3/2

At t = tc, the square root singularity at x = 2γ is replaced by a power 3/2 singularity.

y

x

y

x

y

t<tc
t=tc

t<tc

x

In a vicinity of the critical point, we parametrize t4 as:

tt4 =
1− ε2

12

where ε is the ”mesh size”.

In the small ε limit we have the Taylor expansion:

γ2 ∼ 2t (1− ε) +O(ε2)

and if we rescale x in a vicinity of the branch-point x ∼ 2γ as:

x =
√
8t (1 +

1

4
ε(ζ2 − 2))

we find that y behaves like:

y ∼ −
√
t

3
ε
3
2 (ζ3 − 3ζ) +O(ε

5
2 )

This corresponds to having rescaled the Zhukovsky’s variable near z = 1 as

z = 1 +

√
ε

2
ζ +O(ε).
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Let us define the parametric curve (x̃, ỹ) defined by keeping only the leading non–
trivial behaviors of x and y at small ε:

{
x̃(ζ) = ζ2 − 2
ỹ(ζ) = ζ3 − 3ζ

it is called the ”blow up” of the curve (x, y) near its singularity.
This blown up curve is going to play an important role below.

2.2 Multicritical points

The previous example of just quadrangulations is in some way too simple, as it does
not contain any ”multicritical point”. The reason is that it depends only on 1 variable
tt4.

Example: quadrangles + hexagons

In order to illustrate a more general type of mutlicritical behaviour, consider maps
with both quadrangles (weighted by t4), and hexagons (weighted by t6), in particular
they are even. We have:

V ′(x) = x− t4x
3 − t6x

5

The spectral curve is easily computed with theorem III.1.1:

y =
1

2

(
t6(x

2 − 4γ2)2 + (t4 + 10t6γ
2)(x2 − 4γ2) + 3t4γ

2 + 20t6γ
4 − t

γ2

)√
x2 − 4γ2

where γ2 is the solution of the following algebraic equation, and which behaves like
t+O(t2) at small t:

t = γ2 − 3t4γ
4 − 10t6γ

6, (V-2-1)

i.e. according to chapter III

γ2 =
∑

k,l

tk+l+1 (2k + 3l)!

(k + 2l + 1)! k! l!
(3t4)

k (10 t6)
l.

We have now 2-parameters t4 and t6. For each t4, we can find a critical value of t6
at which y has a cusp y ∼ (x− 2γ)3/2. It happens when 3t4γ2 + 20t6γ4 − t

γ2 = 0, i.e.

t6 =
2− 27 tt4 ± 2(1− 9 tt4)

3
2

270 t2
(V-2-2)

This gives two critical lines in the (t4, t6) plane.

Then, if in addition to eq.(V-2-2), we have t4 + 10t6γ2 = 0, we can find a point (at
the intersection of the two critical lines) where y ∼ (x− 2γ)5/2. This point is at

t4 =
1

9 t
, t6 = − 1

270 t2
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This is best represented on a phase diagram:

2

y~x 5/2

1/2
y~x

4

6

y~x
3/2

tt

tt

Now, our goal is to consider t4 and t6 a little bit away from the critical point, and
study the limit of generating functions of maps, as we approach the critical point.

Of course, depending on how we approach the critical point, we can find different
asymptotic behaviors. The asymptotics for the Fg’s are going to be different if we
approach the critical point along a critical line, or from a generic direction.

Let us consider a small vicinity of the critical point, parametrized as:

t4 =
1

9t
(1− ε2

t̃0
3
) , t6 = − 1

270t2
(1− ε2 t̃0 + ε3 s)

where ε is small (it is the mesh size), and s, t̃0 are of order O(1).
It will be more convenient to use a variable u0 instead of s:

s = 8 u3
0 − 2t̃0 u0.

In some sense u0 measures the distance to critical point along the critical line, and
t̃0 − 12u2

0 measures the ”distance” transverse to the critical line.
The equation eq.(V-2-1) for γ gives:

3t

γ2
= 1 + 2εu0

and if we rescale x in a vicinity of the branch-point 2γ as:

x ∼
√
3t (2 + ε (ζ2 − 2u0) +O(ε2))

we find that y behaves like:

y ∼
√

t

3
ε
5
2

(
−8 ζ5

5
+ 8 u0 ζ

3 + (t̃0 − 12 u2
0)ζ

)
(1 +O(ε))

The parametric curve (x̃, ỹ)

{
x̃(ζ) = ζ2 − 2u0

ỹ(ζ) = −8
5 (ζ

5 − 5 u0ζ3 +
15 u2

0
2 ζ) + t̃0 ζ
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is called the ”blown up” of the curve (x, y) near its singularity. Again, anticipating on
section 4, we notice that the exponents 5 and 2, are a hint that this spectral curve has
to do with the (5, 2) minimal model.

The differential form ydx plays a key role in the recursive computations of W (g)
n ’s,

and it scales like:
ydx ∼ t ε7/2 ỹ dx̃+O(ε9/2).

Remark 2.2 If we would compare the formal matrix model for maps to a convergent matrix
integral, then the large N limit of the density of eigenvalues would be ρ(x)dx = N

2πit y dx.
Thus, we see that if we choose

ε ∼ N−2/7,

then a region of size of order ε near the edge, contains a finite number of eigenvalues of the
random matrix. This is a hint that the double scaling limit to be considered will be t → tc
and N → ∞ and N(1− t/tc)7/4 = O(1).

Multicritical points, general case

More generally, when we consider maps, we have a spectral curve (x, y) depending on
some parameters t3, t4, . . . td and t. As we have already noticed, the spectral curve
depends only on the rescaled parameters t

k
2−1 tk, and the parameter t is redundant,

but for further convenience we prefer to keep it.

In the space of parameters ti, there exists critical sub-manifolds, corresponding to
various singular behaviours for the spectral curves (x, y), of the form y ∼ (x − a)p/q,
where q = 2 and p = 2m+ 1.

Consider a critical point ti = tic, at which we have y ∼ (x− a)m+ 1
2 .

When we move away from this point, we may move along various directions, for
instance along a submanifold where y ∼ (x−a)m

′+ 1
2 with m′ < m, or we can also move

into a non critical direction m′ = 0.

Therefore, it is better to reparametrize our parameters t, ti’s as functions of more
appropriate parameters ε, t̃i’s:

ti = ti(ε, t̃1, . . . , t̃m) where ε2 = tc − t

and in such a way that the spectral curve can be written in the regime ε → 0 and
t̃i = O(1) as: {

x(ζ) ∼ ac + γcε(ζ2 − 2u) +O(ε2)
y(ζ) ∼ tc

γc
εm+ 1

2 (
∑m

m′=0 t̃m′Qm′(ζ)) +O(εm+ 3
2 )

where

Qm′(ζ) =
m′∑

j=0

(−u)j

j!

(2m′ + 1)!!

(2m′ − 2j + 1)!!
ζ2m

′−2j+1 =
(
(ζ2 − 2u)m

′+ 1
2

)

+
(V-2-3)

is a polynomial of ζ of degree 2m′ +1 (it is the polynomial part of the large ζ Laurent
series expansion of (ζ2 − 2u)m

′+ 1
2 ).
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The first few are

Q0(ζ) = ζ , Q1(ζ) = ζ3 − 3uζ , , Q2(ζ) = ζ5 − 5u ζ3 +
15 u2

2
ζ

The spectral curve now depends on the parameters ε, u, and t̃i, i = 1, . . . , m.
We have an extra parameter u, but we shall see below, that some consistency

condition imply that u has to be a certain function of the t̃i’s.

At ε (= 0, the spectral curve is regular, its branchpoints are of square root type. The
curve becomes singular in the ε → 0 limit, and depending on the t̃i’s, it may become
critical or multicritical along some critical submanifolds.

Our goal is to study how the Fg’s diverge in the limit ε → 0 (i.e. t − tc → 0). We
are going to prove in theorem 3.1 below, that (remember that ε2 = tc − t):

Fg ∼ (1− t/tc)
(2−2g)µ t2−2g

c F̃g(t̃i) (1 + o(1))

the scaling exponent µ = 2m+3
2m+2 , and the values of F̃g are computed in theorem 3.1

below, and we shall find that the coefficients F̃g are the symplectic invariants (see
chapter VII) of the blown up spectral curve:

{
x̃(ζ) = ζ2 − 2u
ỹ(ζ) =

∑m
m′=0 t̃m′Qm′(ζ).

Then, we shall show that the symplectic invariants of that curve, are related to the
(2m+1, 2) minimal model, and their generating function satisfies the (m+1)th Painlevé
I equation.

3 Computation of the asymptotic W (g)
n ’s

Here, we compute how the functions W (g)
n (x1, . . . , xn) behave in a small region of size

δ around a branchpoint (z = +1 for instance). We shall study this behavior indepen-
dently of being close to a critical point or not, i.e. whether the curve behaves like a
square root y ∼

√
x− a or like any other power y ∼ (x− a)p/q.

Also here, we choose a small size δ on the spectral curve (i.e. in the z variable),
independently of any mesh size ε. It is only later that we shall relate the two.

We thus rescale the Zhukovsky variables zi’s

zi = 1 + δ ζi

and thus xi = x(zi) = α + γ(zi + 1/zi) gives:

xi = x(1) + γ δ2ζ2i +O(δ3).

Our goal is to study the asymptotic behavior of W (g)
n (x1, . . . , xn) in the limit δ → 0.
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For latter purposes, we will also be interested in situations where the size δ may
depend (or not depend) on the times t, tk, and thus x(1) and γ may also have a small
δ expansion.

For example, if we are near a critical point, we may want to choose the scale δ of
the form δ ∼ (tc − t)ν with some appropriate exponent ν (ν = 0 if δ is independent of
t).

However, for the moment, we do not assume any particular relationship, in fact we
allow any arbitrary relationship. Thus we find, by doing a Taylor expansion in powers
of δ:

{
x(z) ∼ x(1) + γ δqx̃(ζ) + o(δ2) , x̃(ζ) = ζ2 − 2u , q = 2
y(z) ∼ t

γ δ
pỹ(ζ) + o(δp)

where p is the leading exponent in powers of δ, and ỹ is, for the moment, an almost
arbitrary function of ζ . For example, if we assume that y would behave locally like
(x− a)p/q then ỹ(ζ) would be a polynomial of ζ of degree p.

The coefficient u comes from the O(δ2) term in the expansion of x(1) = x0 + x1δ−
2γ uδ2 +O(δ3), it is related to the choice of relationship between δ and t, ti’s, and this
choice will depend on the kind of critical point under consideration.

We call the curve ỹ(x̃) the blown up of the curve y(x) in the region of size δ:
{

x̃(ζ)
ỹ(ζ)

.

All the generating functions Fg and W (g)
n are given by theorem III.3.1 and theorem

III.4.3, i.e. by residue formulae in the vicinity of z = ±1. Near z = +1, we write z =
1+δζ , and near z = −1, we have z+1 = 2+O(δ). Let us study how each term behaves
in the small δ limit. The fundamental second kind differential B(z0, z) = 1/(z0 − z)2

behaves like:

B(z0, z) ∼
z near +1 z near −1

z0 near +1 δ−2 B̃(ζ0, ζ) O(1)
z0 near −1 O(1) O(1)

×(1 +O(δ)),

where B̃(ζ0, ζ) is the fundamental second kind differential of the curve ỹ(x̃):

B̃(ζ0, ζ) =
1

(ζ − ζ0)2
.

Similarly, the kernel K (see eq.(III-7-1) in chapter III)

K(z0, z) =
1

2

(
1

z0 − z
− 1

z0 − 1
z

)
1

2y(z) x′(1/z)

behaves like:

K(z0, z) ∼
z near +1 z near −1

z0 near +1 1
t δ

−(p+q)K̃(ζ0, ζ) O(1)
z0 near −1 O(δ−(p+q−1)) O(1)

×(1 +O(δ)),
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where K̃(ζ0, ζ) is the recursion kernel (see chapter VII) of the spectral curve (x̃, ỹ):

K̃(ζ0, ζ) =
1

2

(
1

ζ0 − ζ
− 1

ζ0 + ζ

)
1

2ỹ(ζ) x̃′(ζ)
.

Therefore, we see that the leading contribution to ω(g)
n+1(1+δζ0, . . . , 1+δζn) is given

by the case where all residues are taken near +1, and can be computed only in terms
of B̃ and K̃. By an easy recursion on 2g + n− 2, we obtain:

Theorem 3.1 Double scaling limits of correlation functions

ω(g)
n (1 + δζ1, . . . , 1 + δζn) ∼ t2−2g−n δ(2−2g−n)(p+q) δ−n ω̃(g)

n (ζ1, . . . , ζn) (1 +O(δ))

and ω̃(g)
n are determined by the recursion relation:

ω̃(0)
2 (ζ1, ζ2) =

1

(ζ1 − ζ2)2

ω̃(g)
n+1(ζ0, J) = Res

ζ→0
K̃(ζ0, ζ)

[
ω̃(g−1)
n+2 (ζ ,−ζ , J) +

g∑

h=0

∑

I⊂J

ω̃(h)
1+|I|(ζ , I)ω̃

(g−h)
1+n−|I|(−ζ , J/I)

]

(V-3-1)
where

K̃(ζ0, ζ) =
1

2

(
1

ζ0 − ζ
− 1

ζ0 + ζ

)
1

(ỹ(ζ)− ỹ(−ζ))x̃′(−ζ) .

Therefore, we have found the scaling limit of W (g)
n in a small region of size δ.

Remark 3.1 Notice that the recursion relation eq.(V-3-1) for the ω̃(g)
n ’s, is very similar to

the recursion relation of theorem 3.1 for the ω(g)
n ’s themselves. In fact both are special cases

of the general ”Topological recursion” introduced in [37], which is presented in chapter VII
in this book. In some sense, the topological recursion commutes with taking limits.

Then, one could be tempted to apply the same method to the computation of Fg

(with g ≥ 2), from theorem III.4.3:

(2− 2g)Fg = Res
z→+1

Φ(z)ω(g)
1 (z)dz + Res

z→−1
Φ(z)ω(g)

1 (z)dz (V-3-2)

Indeed, we have seen that ω(g)
1 (1+ δζ) ∼ δ(1−2g)(p+q)−1 ω̃(g)

1 (ζ), whereas near z = −1 (if

z = −1 is not critical) we typically have ω(g)
1 (z) = o(δ(1−2g)(p+q)−1). Thus, naively, one

is tempted to write that the leading behavior of Fg would be:

Fg ∼ δ(2−2g)(p+q) t2−2g F̃g (1 + o(1))

where

F̃g =
1

2− 2g
Res
ζ→0

Φ̃(ζ)ω̃(g)
1 (ζ)dζ
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with Φ̃′(ζ) = ỹ(ζ)x̃′(ζ).

However, this formula can be valid only if F̃g (= 0, otherwise this means that in fact
Fg is given by subdominant contributions and all what we get is in that case

F̃g = 0 ⇔ Fg = o(δ(2−2g)(p+q)).

This is not surprising, because Fg is not a function of δ, it is a function of the ti’s and
so far we have not considered the relationship between δ and the ti’s. For instance if
one chooses δ independent of the ti’s, then in that case Fg should clearly not depend
on δ.

Remark 3.2 In case where both z = −1 and z = +1 are critical points of the curve (x, y),
it may happen that the two terms of eq.(V-3-2) are of the same order of magnitude.

For instance this is the case for even maps, where all functions ω(g)
n have a symmetry

z → −z, and in that case, we get an overall prefactor 2:

Fg ∼ 2 δ(2−2g)(p+q) t2−2g F̃g (1 +O(δ)) .

3.1 Double scaling limit of Fg

In the case of the spectral curve (x, y) of the enumeration of maps, which has near a
critical point a cusp singularity of type y ∼ (x − a)p/q (with p = 2m + 1, q = 2) near
its branchpoint, we choose a scale δ = (1− t/tc)ν , and the blow up is of the form

{
x(z) ∼ x(1) + δq γ(tc)x̃(ζ) + o(δq) , deg x̃ = q = 2
y(z) ∼ δp tc

γ(tc)
ỹ(ζ) + o(δp) , deg ỹ = p = 2m+ 1

where ỹ(ζ) is a polynomial of ζ of degree p. We parametrize the blown up spectral
curve as: {

x̃(ζ) = ζ2 − 2u
ỹ(ζ) =

∑m
k=0 t̃kQk(ζ)

where we decompose the polynomial ỹ(ζ) onto the basis of the Qk’s defined in
eq.(V-2-3).

Moreover, we choose the tk close to their critical value, and we define the t̃j to be
the distance from the critical point, measured in eigendirections, i.e. in the form:

tk = tk,c +
∑

j

Ck,j δ
νj t̃j .

It can thus also be written tk = tk,c +
∑

j Ck,j (1 − t/tc)ννj t̃j . The jth exponent ννj is
called the “dressed exponents”, of the flow which moves from the (2m+1, 2) singularity
to the (2j + 1, 2) singularity (indeed t̃j is associated to Qj(ζ)):

dressed exponents ννj .

It remains to determine the exponents ν and νj (and check that they match with the
KPZ formula [56]).
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In this purpose, we recall lemma III. 1.4, we have (at fixed tk):

∂x(z)

∂z

∂y(z)

∂t
− ∂y(z)

∂z

∂x(z)

∂t
=

1

z
.

which can be rewritten, in the regime z = 1 + δ ζ , and δ ∼ (1− t/tc)ν , as:

∑

k

t̃k((p− νk) x̃
′(ζ)Qk(ζ)− q Q′

k(ζ) x̃(ζ)) =
−1

ν
δ

1
ν−(p+q−1) (1 + o(1)). (V-3-3)

From their definition (see eq.(V-2-3)), one sees that the Qk satisfy

(2k + 1)x̃′Qk − 2x̃Q′
k = −2(2k + 3)(−u/2)k+1 (2k + 2)!

(k + 1)! (k + 1)!
.

Since the Qk form a basis of odd polynomials of degree ≤ 2m+ 1, the only possibility
for the right-hand-side of eq.(V-3-3) to be a constant, is to choose p− νk = 2k + 1.

Also, since the left-hand-side of eq.(V-3-3) is independent of δ, we must have 1/ν =
p+ q − 1:

ν =
1

p+ q − 1
, νk = p− (2k + 1) = 2(m− k).

We also find that u is solution of a polynomial equation:

∑

k

t̃k
(2k + 3)!

(k + 1)!2
(−u/2)k =

p+ q − 1

2
. (V-3-4)

Therefore, the generating functions of large maps are asymptotically given by

Theorem 3.2 Double scaling limit of the Fg’s enumerating functions of maps, at a
(p, q) critical point (p = 2m+ 1, q = 2), for g ≥ 2:

Fg ∼ (1− t/tc)
(2−2g) p+q

p+q−1 t2−2g
c F̃g +O((1− t/tc)

ν+(2−2g) p+q
p+q−1 )

where

F̃g =
C

2− 2g
Res
ζ→0

Φ̃(ζ) ω̃(g)
1 (ζ) (V-3-5)

and where
Φ̃′(ζ) = ỹ(ζ)x̃′(ζ)

and where generically C = 1. For cases where the 2 branchpoints are critical, we may
have C (= 1, in particular for even maps we have C = 2.

Therefore, we have computed the double scaling limit F̃g of Fg.

Remark 3.3 If p = 1, q = 2, i.e. if the spectral curve has a regular branchpoint y ∼
√
x− a,

the Blown up spectral curve is simply ỹ =
√
x̃+ 2u, and one may check that this spectral

curve has F̃g = 0, which is expected since Fg is not divergent when the spectral curve is
regular. In that case, Fg is given by the subdominant contributions. Therefore theorem 3.2
is useful only when p ≥ 3.
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Remark 3.4 The recursion relations eq.V-3-1 and eq.V-3-5 are very similar to the ones for

W (g)
n and Fg of theorem.3.1 and theorem.4.3 in chapter III. We will show in chapter VII,

that it is possible to define a common framework for both Fg and its double scaling limit
F̃g, namely the notion of a family of ”symplectic invariants” attached to any spectral curve
y(x). The counting functions of maps as well as their scaling limits are special cases of those
invariants.

In other words, if Fg is the gth symplectic invariant of the spectral curve y(x), then:

Theorem 3.3 F̃g is the gth symplectic invariant of the blown up spectral curve ỹ(x̃).

The notion of symplectic invariants of a spectral curve is explained in chapter VII.

3.2 Critical exponents and KPZ

In this subsection, we mention very briefly the link to KPZ. Readers can easily skip to
the next section. We just sketch without details the link to conformal field theory, and
refer the readers to reference books and reviews on the subject [27, 42].

Definition 3.1 The critical exponents in quantum gravity are defined as:

• The “string susceptibility exponent” γ (often denoted γstring in the physics
literature) is such that γ = γ0 and γg are related to how the generating function Fg

(generating function for genus g surfaces) diverges when the mesh size (1− t/tc) tends
to 0 (or equivalentely, how it diverges at large area):

F0 ∼ (1− t/tc)
2−γ t2c F̃0 + regular

and for higher genus
Fg ∼ (1− t/tc)

2−γg t2−2g
c F̃g.

• The “dressing exponents” ∆j,1 are related to the scaling behaviors when one
moves away from the (2m+1, 2) critical point along a critical submanifold of codimen-
sion r (i.e. a (2r + 1, 2) critical submanifold), measured in mesh size, and normalized
so that ∆1,1 = 0 for j = 1. In other words it is related to the scalings

tk = tk,c +
∑

j

Ck,j (1− t/tc)
∆j,1−∆m,1
1−∆m,1 t̃j .

We have thus proved that

Theorem 3.4 The critical exponents are:

2− γg = (2− 2g) (p+ q)ν = (2− 2g)
p+ q

p+ q − 1

In particular in genus 0:

γ =
−2

p+ q − 1
.
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The exponents ∆j,1 are related to νj = p− (2j + 1) = 2(m− j) by:

∆j,1 −∆m,1

1−∆m,1
= ννj =

2(m− j)

p+ q − 1

and since ∆1,1 = 0:

∆j,1 =
2− 2j

4
=

|p− qj|− |p− q|
p+ q − |p− q|

They are those predicted by the Kac’s table [27] and the KPZ formula [56].

Kac’s table

We refer the reader to literature on Conformal Field Theory, for example [27].
Finite representations of the conformal group in 2 dimensions, are classified as the

(p, q) minimal models. The (p, q) minimal model has central charge

c = 1− 6
(p− q)2

pq
= 1− 6

(√
κ

2
− 2√

κ

)2

,

where we introduced the parameter κ = 4q
p . This parameter κ is the one that appears

in the famous SLEκ processes, see the literature [29, 77].

Minimal models have a finite number of possible heighest weights. For the (p, q)
minimal model The heighest weights of the (p, q) minimal models are labeled by two
integers (r, s) with 0 < r < p and 0 < s < q, and with the identification (r, s) ≡
(p− r, q − s). Their heighest weights are given by the famous Kac’s formula:

hr,s =
(ps− qr)2 − (p− q)2

4pq
.

The weights hr,s are the exponents that control how the corresponding fields change
under dilatations.

* The field (1, 1) has weight 0, it is called the “identity operator”:

(1, 1) field = Identity , h1,1 = 0.

* The value of (r, s) which gives the minimum of |ps − qr|, is called the “most
relevant operator”, it has the smallest weight hr,s.

* The unitary minimal models are those for which |p − q| = 1, and for them, the
“most relevant operator” is the Identity (1, 1).

• Case (p, q) = (2m+ 1, 2).
In that case, the central charge is

c = 1− 3
(2m− 1)2

2m+ 1
.

There are m heighest weights correponding to s = 1 and 1 ≤ r ≤ m, their weights are

hr,1 =
(r − 1) (r − 2m)

2(2m+ 1)
.
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In that case, the most relevant operator is (r, s) = (m, 1), its weight is:

hm,1 =
−m (m− 1)

2(2m+ 1)
.

The only unitary models among the (2m+ 1, 2) models, are the (3, 2) model (pure
gravity), with central charge c = 0, and the (1, 2) model (Airy model) with central
charge c = −2.

KPZ

Polyakov understood in 1981 [74], that conformal Field theories can be coupled to
gravity, in a way preserving conformal invariance, by adding a new field: the Liouville
field.

The Liouville field is constructed from the Gaussian free field, see [29], and was
recently constructed in probability theory [24].

There are also exponents controling how the fields change with a dilatation, how-
ever, the coupling to gravity means that the metric itself changes under dilatations,
and thus the exponents get “dressed” by gravity.

It is cutomary to measure the behavior under dilatations by measuring how the fields
scale in powers of the area of the surface when the area becomes large, or equivalently
how they scale in powers of the mesh size at small mesh.

Recall that for us the mesh size is (1− t/tc).
The exponent γg controls the scaling of the partition function of genus g. In Liou-

ville theory, the topology enters only through the integral of the curvature, which is
proportional to the Euler characteristics χ = 2 − 2g, and thus γg is expected to be a
polynomial of degree 1 of the genus. We write it:

2− γg = (1− g)(2− γ)

with γ = γ0. In other words, the exponent γ should be such that

Fg ∼ (1− t/tc)
2−γg t2−2g

c F̃g ∼ (1− t/tc)
(1−g)(2−γ) t2−2g

c F̃g.

The KPZ formula, due to Knizhnik, Polyakov, Zamolodchikov [56], computes the
dressing exponents ∆r,s of the weights hr,s. They claim that:

κ

4
∆2

r,s +
(
1− κ

4

)
∆r,s = hr,s,

where κ = 4q
p is the SLE parameter.

For (p, q) minimal models, this gives:

∆r,s =
|ps− qr|− |p− q|
p+ q − |p− q|

.

Notice that the identity operator (r, s) = (1, 1), is undressed:

∆1,1 = 0.
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The most relevant operator (m, 1) has the dressing:

∆m,1 =
1− |p− q|

p+ q − |p− q| .

They also found the string exponent γ, associated to the most relevant operator
(r, s):

γr,s = − 2 |ps− qr|
p+ q − |ps− qr| .

KPZ formulae for the (2m+ 1, 2) minmal model

In that case we have:

∆r,s =
2− 2r

p+ q − 1
=

1− r

m+ 1
,

and

γ = γm,1 = − 2

p+ q − 1
= − 1

m+ 1
.

This is in agreement with our direct proof from the generating functions of maps.

3.3 Example: triangulations and pure gravity

Consider the generating function for triangulations. The potential is:

V (x) =
x2

2
− t3

x3

3
whose spectral curve was computed in section 1.8 of chapter III:

{
x(z) = α + γ(z + 1/z)
y(z) = 1

γ (z − 1/z)− t3γ2(z2 − z−2)

where α, γ are determined by

r − r3 = 8tt23 , γ2 =
t

r
, α =

1− r

2t3
.

2γ

t t
2
3

8

t/

172



The equation for γ becomes singular at
√
t t3 = tc, where

tc =
1

2
3−3/4 , rc =

1√
3
,

and one can check that at this point, the spectral curve has a (3/2) cusp y ∼ (x −
x(1))3/2. This is the (3, 2) critical point, p = 3 = 2m+1 with m = 1, also called ”pure
gravity”.

Near tc we parametrize with a scaling δ:

√
t t3 = tc(1−

3

4
δ4),

so that we obtain

γ ∼ γ(tc)(1−
1

2
δ2) +O(δ3) , α ∼ α(tc)− γ(tc) δ

2 +O(δ3)

where
γ(tc) = 31/4

√
t , α(tc) = 31/4

√
t (
√
3− 1).

If we choose
z = 1 + δ ζ

we have: {
x(z) ∼ α(tc) + 2γ(tc) + 31/4

√
t δ2 (ζ2 − 2) + o(δ2)

y(z) ∼
√
t

31/4
δ3 (ζ3 − 3ζ) + o(δ3)

i.e. the blown up curve is {
x̃(ζ) = ζ2 − 2
ỹ(ζ) = ζ3 − 3ζ .

Not surprisingly, we recognize the polynomial Q1(ζ) = ζ3 − 3ζ of eq.(V-2-3).

Applying theorem 3.1, for example, we find for the first few n and g:

ω̃(0)
3 (ζ1, ζ2, ζ3) = −1

6

1

ζ21ζ
2
2ζ

2
3

(V-3-6)

ω̃(1)
1 (ζ) = − 1

(12)2
ζ2 + 3

ζ4
(V-3-7)

ω̃(1)
2 (ζ1, ζ2) =

15ζ41 + 15ζ42 + 9ζ21ζ
2
2 + 6ζ41ζ

2
2 + 6ζ21ζ

4
2 + 2ζ41ζ

4
2

25 33 ζ61 ζ
6
2

(V-3-8)

ω̃(2)
1 (ζ) = −7

135 + 87ζ2 + 36ζ4 + 12ζ6 + 4ζ8

210 35 ζ10
(V-3-9)

ω̃(0)
4 (ζ1, ζ2, ζ3, ζ4) =

1

9 ζ21ζ
2
2ζ

2
3ζ

2
4

(

1 + 3
∑

i

1

ζ2i

)
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ω̃(0)
5 (ζ1, ζ2, ζ3, ζ4, ζ5) =

1

9 ζ21ζ
2
2ζ

2
3ζ

2
4ζ

2
5

(

1 + 3
∑

i

1

ζ2i
+ 6

∑

i<j

1

ζ2i ζ
2
j

+ 5
∑

i

1

ζ4i

)

etc...
Using theorem III.4.7, we have

∂Fg

∂t
= − Res

z→±1
ω(g)
1 (z) dz ln z.

To leading order in δ, only the residue at z = +1 contributes, and writing ln z =
ln(1 + δζ) = δζ +O(δ)2, we get

∂Fg

∂t
∼ − t1−2g δ5(1−2g)+1 Res

ζ→0
ω̃(g)
1 (ζ) ζ dζ .

Similarly, taking a second derivative gives

∂2 Fg

∂t2
∼ t−2g δ2−10g Res

ζ1→0
Res
ζ2→0

ω̃(g)
2 (ζ1, ζ2) ζ1 dζ1 ζ2 dζ2.

and a third derivative

∂3 Fg

∂t3
∼ −t−1−2g δ3−5(1+2g) Res

ζ1→0
Res
ζ2→0

Res
ζ3→0

ω̃(g)
3 (ζ1, ζ2, ζ3) ζ1 dζ1 ζ2 dζ2 ζ3 dζ3.

From eq.V-3-6, we thus get

∂3F0

∂t3
∼ −δ

−2

6t
−→ ∂2F0

∂t2
∼ − δ2

2
,

and using eq.V-3-8:
∂2F1

∂t2
∼ δ−8

24 33 t2

as well as using eq.V-3-9:

∂F2

∂t
∼ 7 δ−14

28 35 t3
−→ ∂2F2

∂t2
∼ 49 δ−18

28 36 t4
.

We define ug such that
∂2Fg

∂t2
∼ ug

δ2−10g

t2g

i.e.

u0 = − 1

2
, u1 =

1

24 33
, u2 =

49

28 36
, . . .

We may thus verify that the second derivative of the free energy:

u(s) =
∞∑

g=0

s(1−5g)/2 ug

satisfies the Painlevé I equation to the first orders:

2u2 +
1

33
u′′ =

1

2
s+ o(s−4).

Our goal now, is to prove that u(s) satisfies Painlevé I to all orders.
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4 Minimal models

The goal of this section is to prove that the following formal series

ln τ =
∑

g

N2−2g F̃g

whose coefficients F̃g are the generating functions of large maps, is a formal Tau-
function for the mth reduction of the Kordeweg-De-Vries (KdV) hierarchy of inte-
grable equations. That reduction of KdV is also called the (2m+ 1, 2) minimal model
in the context of conformal field theory. It can be obtained from Liouville conformal
field theory coupled to 2D gravity.

In some sense, we obtain an argument towards the idea that large maps should be
related to Liouville gravity.

4.1 Introduction to Minimal models

There exists several equivalent definitions of minimal models coupled to gravity. Here
we shall adopt the approach of Douglas and Shenker in 1990 [28]. Minimal models cor-
respond to representations of the conformal group in 2 dimensions. They are classified
by two integers (p, q), and their central charge is:

c = 1− 6
(p− q)2

pq
.

Some of them have received special names (see [42]):
• (1, 2) = Airy, c = −2 (related to Tracy-Widom law [80])
• (3, 2) = pure gravity, c = 0
• (5, 2) = Lee-Yang edge singularity, c = −22

5
• (4, 3) = Ising, c = 1

2
• (6, 5) = Potts-3, c = 4

5

Minimal models can also be viewed as finite reductions of the Kadamtsev-
Petviashvili (KP) integrable hierarchy of partial differential equations [8, 54].

The case q = 2 is a little bit simpler to address, and is a reduction of the Korteweg
de Vries (KdV) hierarchy [8, 48, 59].

The KdV hierarchy, and the minimal models (p, 2) have generated a huge amount
of works, and have been presented in many different (but equivalent) formulations. For
instance in terms of a string equation for differential operators, in terms of a Lax pair, in
terms of commuting hamiltonians, in terms of Schrödinger equation, in terms of Hirota
equations, in terms of isomonodromic systems, in terms of Riemann Hilbert problems,
in terms of tau functions, in terms of Grasman manifolds, in terms of Yang-Baxter
equations, ...etc, see [8] for a comprehensive lecture.

All those formulations are equivalent, and let us recall some of the well known
features of the (p, 2) reduction of KdV (see [8, 27]), presented in a way convenient for
our purposes.
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4.2 String equation

The KdV minimal model (p, 2) with p = 2m+1, coupled to gravity, was formulated in
terms of a ”string equation” by Douglas and Shenker in 1990 [28]. Let P , Q two differ-
ential operators of respective orders p and 2, satisfying the so-called ”string equation”:

[P,Q] =
1

N
Id (V-4-1)

Q = d2 − 2u(s) , P = dp − p u dp−2 + . . . , d =
1

N

d

ds
1
N is a redundant parameter, which can be absorbed by a redefinition of s and u, but
we prefer to keep it to play the role of a scaling parameter which can be sent to zero
to get the ”classical limit”.

In all this chapter, we shall denote with a dot the derivative with respect to s:
df/ds = ḟ in order to shorten notations. The prime will be reserved to derivatives
with respect to the spectral parameter df/dx = f ′.

Solution of the string equation

The general solution of the string equation eq.(V-4-1) is known. Let us describe it
below.

Definition 4.1 Let (Qj+1/2)+ be the unique differential operator of order 2j +1, such
that:

order[((Qj+1/2)+)
2 −Q2j+1] ≤ 2j.

For example:

(Q1/2)+ = d , (Q3/2)+ = d3 − 3ud− 3u̇

2N
,

(Q5/2)+ = d5 − 5ud3 +
15

2
u2d− 15u̇

2N
d2 − 25ü

4N2
d− 15

8N3

...
u+

15uu̇

2N
, . . .

Lemma 4.1 It is a classical result (see [42]) that it satisfies:

[(Qj−1/2)+, Q] =
1

N

d

dt
(Rj(u(s))) (V-4-2)

where the right hand side is a function (a differential operator of order 0).

proof:
We propose the proof of this lemma as an exercise at the end of this chapter, and

we give some hints of how to do it. !
The coefficients Rj(u) are called the Gelfand-Dikii differential polynomials [42].

They can be obtained by a recursion.
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Definition 4.2 (Gelfand-Dikii polynomials) The Gelfand-Dikii differential poly-
nomials are defined by the recursion:

R0 = 2 , Ṙj+1 = −2uṘj − u̇Rj +
1

4N2

...
Rj . (V-4-3)

and by the condition that Rj is homogenous of degree j in u with the grading convention
that ˙= ∂/∂s has the same grading as

√
u.

The first few of them are:

R0 = 2
R1 = −2u
R2 = 3 u2 − 1

2N2 ü

R3 = −5u3 +
5

2N2
uü+

5

4N2
u̇2 − 1

8N4

....
u

...

and in general:

Rj(u) =
2 (−1)j (2j − 1)!!

j!

[
uj − j(j − 1)

12N2
uj−2ü

−j(j − 1)(j − 2)

24N2
uj−3u̇2

]
+ . . . − 2

(2N)2j−2
u(2j−2). (V-4-4)

Lemma 4.2 Any solution of the string equation

[P,Q] =
1

N
Id

where Q = d2 − 2u and P = d2m+1 + . . ., can be written:

P =
m∑

j=0

t̃j(Q
j+1/2)+ +

m−1∑

j=0

cjQ
j , t̃m = 1

where cj, t̃j are constants (independent of s) and u(s) is a solution of the non-linear
differential equation:

m∑

j=0

t̃jRj+1(u) = s.

(V-4-5)

This equation has the Painlevé property

proof:
The proof that the solution takes that form is obvious from lemma 4.1. The fact

that the equation satisfies the Painlevé property is beyond the scope of this book, and
we shall not use it here. We refer the reader to [23] for more details about the Painlevé
property. !

The coefficients cj associated to Qj will play no role in what follows, because
[Qj , Q] = 0, so from now on, we shall choose cj = 0.
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Remark 4.1 Since R0 = 2, we see that we can identify s with s = −2t̃−1.

Examples:
• For Airy p = 1, the equation for u is:

− 2u = s. (V-4-6)

• For pure gravity p = 3, this is the Painlevé I equation:

3 u2 − 1

2N2
ü− 2t̃0u = s. (V-4-7)

• For Lee-Yang p = 5, we have:

− 5u3 +
5

2N2
uü− 5

4N2
u̇2 − 1

8N4

....
u + t̃1(3 u

2 − 1

2N2
ü)− 2t̃0u = s. (V-4-8)

4.3 Lax pair

Consider the following matrices:

Definition 4.3

R(x, s) =

(
0 1

x+ 2u(s) 0

)
,

and for any integer k:

Dk(x, s) =

(
Ak Bk

Ck −Ak

)
,

where Ak(x, s), Bk(x, s), Ck(x, s) are polynomials of respective degree k − 1, k, k + 1 in
x, which are defined by (Rj(u) is the jth Gelfand-Dikii polynomial, cf def 4.2):

Bk(x, s) =
1

2

k∑

j=0

xk−j Rj(u) , Ak = − 1

2N
Ḃk , Ck = (x+2u)Bk+

1

N
Ȧk.

The recursion relation eq.(V-4-3) implies that Bk satisfies the equation:

2u̇Bk + 2(x+ 2u)Ḃk −
1

2N2

...
Bk = −Ṙk+1(u)

and we see that

Lemma 4.3 the matrix Dk(x, t) satisfies:

1

N

∂

∂s
Dk(x, s) + [Dk(x, s),R(x, s)] = − 1

N
Ṙk+1(u)

(
0 0
1 0

)
, (V-4-9)

the right hand side is independent of x, and is proportional to ∂
∂xR(x, s).

This equation is called a “Lax equation”.
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4.4 Lax equation

Therefore we have obtained that, if u is a solution of the string equation eq.(V-4-5),
then, the matrix:

D(x, s) =
m∑

j=0

t̃jDj(x, s) , t̃m = 1

satisfies the Lax equation:

Proposition 4.1 The matrices D(x, s) and R(x, s) form a Lax pair, they satisfy the
Lax equation

1

N

∂

∂s
D(x, s) + [D(x, s),R(x, s)] = − 1

N

∂

∂x
R(x, s) (V-4-10)

which can also be written as
[
1

N

∂

∂x
+D(x, s),R(x, s)− 1

N

∂

∂s

]
= 0 (V-4-11)

This relation means that the operator 1
N

∂
∂x +D(x, s) is a Lax operator [8].

4.5 The linear ψ system

The Lax equation eq.(V-4-11) is the compatibility condition, which says that the fol-
lowing two differential systems have a common solution Ψ(x, s):

1

N

d

dx
Ψ(x, s) = −D(x, s)Ψ(x, s) ,

1

N

d

ds
Ψ(x, s) = R(x, s)Ψ(x, s) (V-4-12)

and Ψ(x, s) is a matrix such that:

Ψ(x, s) =

(
ψ φ
ψ̃ φ̃

)
, detΨ = 1. (V-4-13)

In particular this implies the Schrödinger equation for ψ:

1

N2
ψ̈(x, s) = (x+ 2u(s))ψ(x, s) (V-4-14)

where s can be interpreted as the space variable, u(s) is the potential, and x the energy.
This is why x is often called the ”spectral parameter”. ! = 1/N can be interpreted
as the Planck constant and this is why the limit N → ∞ is called the “classical
limit”.

It is possible to normalize detΨ = 1, because 1
N d/ds ln detΨ = tr R(x, s) = 0,

and thus detΨ(x, s) is independent of s, similarly, 1
N d/dx ln detΨ = − trD(x, s) = 0,

and thus detΨ(x, s) is independent of x, i.e. it is a constant, and up to a choice of
normalization, it can be chosen equal to 1.
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4.6 Kernel and correlators

Define

Definition 4.4 the (generalized) Christoffel-Darboux kernel associated to the system
D(x, s) is defined as

K(x1, x2) =
ψ(x1)φ̃(x2)− ψ̃(x1)φ(x2)

x1 − x2
=

1

x1 − x2

(
Ψ(x1)

−1 Ψ(x2)
)
2,2

. (V-4-15)

Remark 4.2 In fact, the actual Christoffel-Darboux kernel usually considered in the liter-
ature, is the

(
Ψ(x1)−1 Ψ(x2)

)
2,1

. It turns out that the 2 are related, and this one is more
convenient for our purposes.

Definition 4.5 We define the “connected correlators” by the ”determinantal for-
mulae”:

Ŵ1(x) = lim
x′→x

K(x, x′)− 1

x− x′ = ψ′(x)φ̃(x)− ψ̃′(x)φ(x) (V-4-16)

and for n ≥ 2:

Ŵn(x1, . . . , xn) = − δn,2
(x1 − x2)2

− (−1)n
∑

σ=cyles

n∏

i=1

K(xi, xσ(i)) (V-4-17)

where we take the sum over all cyclic permutations (i.e. σ has only one cycle).

For example:

Ŵ2(x1, x2) = −K(x1, x2)K(x2, x1)−
1

(x1 − x2)2
,

Ŵ3(x1, x2, x3) = K(x1, x2)K(x2, x3)K(x3, x1) +K(x1, x3)K(x3, x2)K(x2, x1).

Although we have not written it explicitly, the kernel K and the correlators Ŵn

depend on s.

Remark 4.3 Our goal in this section will be to prove that the correlators Ŵn defined from
the minimal model, coincide with the correlators W̃n of section 3 defined from the double
scaling limit of generating functions of large maps:

Ŵn
?
= W̃n.

Definition 4.6 The non-connected correlators are defined by:

Ŵn(x1, . . . , xn)n.c. =
∑

µ({x1,...,xn}

)(µ)∏

i=1

Ŵ|µi|(µi),

where the sum runs over all partitions µ = (µ1, . . . , µ)(µ)) of {x1, . . . , xn} into non-

empty disjoint subsets. In other words, the connected Ŵn’s are the cumulants of the
non-connected ones.
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For instance:

Ŵ2(x1, x2)n.c. = Ŵ2(x1, x2) + Ŵ1(x1)Ŵ1(x2),

Ŵ3(x1, x2, x3)n.c. = Ŵ3(x1, x2, x3) + Ŵ1(x1)Ŵ2(x2, x3) + Ŵ1(x2)Ŵ2(x1, x3)
+Ŵ1(x3)Ŵ2(x1, x2) + Ŵ1(x1)Ŵ1(x2)W̃1(x3). (V-4-18)

The formula eq.(V-4-17) is called ”determinantal formula”, because for the non-
connected correlators, the sum over cyclic permutations in eq.(V-4-17) is replaced by
a sum over all permutations, with their signature:

Ŵn(x1, . . . , xn)n.c. =
′

det(K(xi, xj)) =
′∑

σ

(−1)σ
∏

i

K(xi, xσ(i))

where det′ and
∑′ signify that whenever the permutation σ has a fixed point if σ(i) = i

we must replace the ill-defined K(xi, xi) by Ŵ1(xi), and whenever the permutation σ
has a cycle of length 2, i.e. σ(i) = j and σ(j) = i, we replace K(xi, xj)K(xj , xi) by
−Ŵ2(xi, xj), see [10].

For instance Ŵ3, n.c. is the sum of 6 terms coming from the 6 permutations:

Ŵ3, n.c.(x1, x2, x3) =
′

det




K(x1, x1) K(x1, x2) K(x1, x3)
K(x2, x1) K(x2, x2) K(x2, x3)
K(x3, x1) K(x3, x2) K(x3, x3)





= Ŵ1(x1)Ŵ1(x2)Ŵ1(x3) + Ŵ1(x1)Ŵ2(x2, x3) + Ŵ1(x2)Ŵ2(x1, x3)
+Ŵ1(x3)Ŵ2(x1, x2) +K(x1, x2)K(x2, x3)K(x3, x1)
+K(x1, x3)K(x3, x2)K(x2, x1) (V-4-19)

which coincides with eq.(V-4-18).

Alternative definition of the correlators

Notice that:

K(x, x′) =
(ψ(x)φ̃(x′)− ψ̃(x)φ(x′))

x− x′ =
1

x− x′

(
Ψ(x)−1 Ψ(x′)

)
2,2

and thus

K(x, x′)K(x′, x′′) =
1

(x− x′)(x′ − x′′)

(
Ψ(x)−1Ψ(x′)EΨ(x′)−1Ψ(x′′)

)
2,2

where E is a matrix which projects on the (2, 2) coefficient:

E =

(
0 0
0 1

)
.

This leads to define
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Definition 4.7 The projector M(x):

M(x) = Ψ(x)EΨ(x)−1 =

(
−ψ̃(x)φ(x) ψ(x)φ(x)
−ψ̃(x)φ̃(x) ψ(x)φ̃(x)

)

The matrix M(x) is a projector, it satisfies

M(x)2 = M(x) , TrM(x) = 1 , detM(x) = 0.

Thanks to that matrix M(x), we can rewrite any cyclic product of K(xi, xσ(i)) as a
cyclic product of matrices M(x):

∏

i

K(xi, xσ(i)) =
Tr
∏

i M(xσi(1))∏
i(xi − xσ(i))

For example:

Ŵ2(x, x
′) = −K(x, x′)K(x′, x)− 1

(x− x′)2
=

TrM(x)M(x′)

(x− x′)2
− 1

(x− x′)2

and

K(x, x′)K(x′, x′′)K(x′′, x) =
TrM(x)M(x′)M(x′′)

(x− x′)(x′ − x′′)(x′′ − x)

It follows that

Ŵ3(x, x
′, x′′) =

Tr (M(x)M(x′)M(x′′)−M(x)M(x′′)M(x′))

(x− x′)(x′ − x′′)(x′′ − x)
=

TrM(x) [M(x′),M(x′′)]

(x− x′)(x′ − x′′)(x′′ − x)
.

And in general the correlators are:

Theorem 4.1
Ŵ1(x) = N TrD(x)M(x)

Ŵ2(x1, x2) =
TrM(x1)M(x2)

(x1 − x2)2
− 1

(x1 − x2)2

and for n ≥ 3

Ŵn(x1, . . . , xn) = (−1)n−1
∑

σ=cyclic

Tr
∏n−1

i=0 M(xσi(1))∏n
i=1(xi − xσ(i))

Loop insertion

We shall define a ”loop insertion operator” δx acting as a derivation (i.e. satisfying
Leibniz’s chain rule) on the functions ψ, ψ̃,φ, φ̃, and inserting functions of more vari-
ables (whence the name insertion).

In that purpose we first need to define formally derivative acting on a set of func-
tions, without evaluating the derivatives. This is the notion of the Picard-Vessiot ring.

let Fn = C(x1, . . . , xn) be the field of rational functions of n variables, and F∞ the
projective limit n → ∞.
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Definition 4.8 Let A be the Picard-Vessiot differential ring over F freely gener-
ated by the symbols ψ(x), ψ̃(x),φ(x), φ̃(x), and quotiented by the relation ψ(x)φ̃(x) −
ψ̃(x)φ(x) = 1.

This means that A is generated by all the symbols ψ(x), ψ̃(x),φ(x), φ̃(x), and their
derivatives with respect to any ∂/∂xi and ∂/∂s, and is the set of all their sums and
products.

We also define its n-dimensional analogue, An to be the Picard-Vessiot differential
ring with n variables.

It is the differential ring over Fn freely generated by the symbols
ψ(xi), ψ̃(xi),φ(xi), φ̃(xi), i = 1, . . . , n, and quotiented by the n relations
ψ(xi)φ̃(xi)− ψ̃(xi)φ(xi) = 1.

Let A∞ its n → ∞ projective limit.

Then, we define a loop insertion operator, as an operator δ : An → An+1, by:

Definition 4.9 Let U(x1) ∈ M2(A1) an arbitrary 2× 2 matrix whose elements belong
to the Picard-Vessiot ring A1, i.e. only function of one variable x1.

We say that δ, acting in A∞ is a ”loop insertion operator” if it satisfies:

• δ sends An into An+1.

• δ annihilates F∞, i.e. F∞ ⊂ Ker δ.

• δ is a derivation, it satisfies the Leibniz rule δx(fg) = fδxg + gδxf .

• its action on the generators of A is

δx′Ψ(x) =
M(x′)

x− x′ Ψ(x) + U(x′)Ψ(x)

• it commutes with the derivations d/dxi and d/ds:
[
δxj ,

d

dxi

]
= 0 ,

[
δxj ,

d

ds

]
= 0

This is equivalent to requiring

δx′D(x) = [
M(x′)

x− x′ + U(x′),D(x)] +
1

N

M(x′)

(x− x′)2

δx′R(x) = [M(x′),
R(x)−R(x′)

x− x′ ] + [U(x′),R(x)] +
1

N
U̇(x′)

• The δxi’s comute together:
[δxi , δxj ] = 0

This last requirement is equivalent to demand that

δxU(y)− δyU(x) = [U(x), U(y)] +
U(x)− U(y)

y − x
.
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(In order for this definition to be meaningful, one has to check that the action of
δ is compatible with the relations ψ(xi)φ̃(xi) − ψ̃(xi)φ(xi) = 1, which we leave to the
reader as an easy exercise).

The existence of an insertion operator is not automatic and not trivial.
However, in our case, such an operator exists:

Proposition 4.2 The following choice for U(x) fulfills all the requirements:

U(x) =

(
0 0

ψ(x)φ(x) 0

)

provided that we define

δx u(s) = ψ(x)φ̃(x) + ψ̃(x)φ(x) =
1

N

d

ds
ψ(x)φ(x). (V-4-20)

proof:
We leave it as an exercise. !
The main properties of the insertion operator are

Proposition 4.3 The kernel K is self–reproducing:

δx′K(x, x′′) = −K(x, x′)K(x′, x′′)

This implies that

δxn+1Wn(x1, . . . , xn) = Wn+1(x1, . . . , xn, xn+1) +
δn,1

(x1 − x2)2

We also have that:

δx′M(x) =
[M(x′),M(x)]

x− x′ + [U(x′),M(x)]

δx′D(x) =
[M(x′),D(x)]

x− x′ + [U(x′),D(x)] +
1

N

M(x′)

(x− x′)2
(V-4-21)

proof:
Those relations are easy to derive from the definition of δ, we leave it as an exercise

for the reader. !

Loop equations

Theorem 4.2 (Loop equations) (proved in [10]):
the quantity

Pn(x; x1, . . . , xn)
= Ŵn+2, n.c.(x, x, x1, . . . , xn)

+
n∑

j=1

∂

∂xj

Ŵn(x, x1, . . . , xj−1, xj+1, . . . , xn)− Ŵn(x1, . . . , xn)

x− xj

(V − 4− 22)

is a polynomial of the variable x.
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This assertion is highly non trivial because none of the terms in the right hand
side are polynomials of x, they involve functions ψ(x) for instance. Only this very
combination is polynomial.
proof:

The full proof can be found in [10, 11]. Let us give a hint of the proof.
The case n = 0 is very easy, one can explicitly compute:

P0(x) = Ŵ2(x, x) + Ŵ1(x)
2 = −N2 detD(x, s) =

N2

2
Tr D(x, s)2

which is indeed a polynomial of x.
The cases n ≥ 1 can be obtained from n = 0 by recursively applying δxi . Indeed,

we have:

Pn+1(x; x1, . . . , xn+1) = δxn+1 Pn(x; x1, . . . , xn)−
∂

∂xn+1

Ŵn(xn+1, x1, . . . , xn)

x− xn+1

Then observe from eq.(V-4-21) that δxn+1 D(x) is a rational fraction of x, containing
only elements of An, and Pn can have no other pole than x = ∞.

!

For example, we have that

P1(x; x1) = δx1P0(x)−
∂

∂x1

Ŵ1(x1)

x− x1

=
N2

2
δx1

(
TrD(x, s)2

)
−N

∂

∂x1

1

x− x1
TrD(x1, s)M(x1)

= N2 TrD(x, s) δx1D(x, s)−N
Tr D(x1, s)M(x1)

(x− x1)2

−N
Tr D′(x1, s)M(x1)

x− x1
−N

Tr D(x1, s)M ′(x1)

x− x1

= N2 TrD(x, s)

(
[M(x1),D(x, s)]

x− x1
+ [U(x1),D(x, s)] +

1

N

M(x1)

(x− x1)2

)

−N
Tr D(x1, s)M(x1)

(x− x1)2
−N

Tr D′(x1, s)M(x1)

x− x1

+N2 Tr D(x1, s) [D(x1, s),M(x1)]

x− x1

= N TrD(x, s)
M(x1)

(x− x1)2
−N

Tr D(x1, s)M(x1)

(x− x1)2
−N

Tr D′(x1, s)M(x1)

x− x1

and one observes that (D(x, s) − D(x1, s) − (x − x1)D′(x1, s))/(x − x1)2 is indeed a
polynomial of x.

4.7 Example: (1,2) minimal model, the Airy kernel

Let us write the (1, 2) model, i.e. m = 0. We have:

P = d , Q = d2 − 2u
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the string equation is:

[P,Q] = − 2

N
u̇ =

1

N

i.e.
u(s) = −s

2
= t̃−1

The Lax pair is:

D(x, s) =

(
0 1

x− s 0

)
, R(x, s) =

(
0 1

x− s 0

)

The differential system is:

1

N

d

dx
Ψ(x, s) = −

(
0 1

x− s 0

)
Ψ(x, s)

i.e.
ψ′′ = N2(x− s)ψ

whose solution is the Airy function (The Airy function is solution of Ai′′(x) = xAi(x),
see textbooks on classical functions [1]) rescaled by N2/3:

ψ(x, s) = Ai(N
2
3 (x− s)) , ψ̃(x, s) = −N−1/3 Ai′(N

2
3 (x− s))

and the other independent solution is the ”BAiry” function [1]:

φ(x, s) = −πN1/3Bi(N
2
3 (x− s)) , φ̃(x, s) = πBi′(N

2
3 (x− s))

where in the litterature, Bi is normalized so that Ai Bi′ − Ai′ Bi = 1/π.

The Christoffel–Darboux kernel is thus the famous Airy kernel [80]:

KAiry(s+N−2/3x1, s+N−2/3x2) = π
Ai(x1)Bi

′(x2)− Ai′(x1)Bi(x2)

x1 − x2

and this is why the (1, 2) minimal model coupled to gravity, is sometimes called the
”Airy model”. In fact, since Ai(x) ∝ Bi(x e

2πi
3 )−Bi(x e

−2πi
3 ), by taking a linear combi-

nation of rotations we can replace Bi by Ai. This is the usual convention for defining
the Airy kernel, ours is slightly more general and recovers the standard one by taking
the difference after rotations by angles ±2π/3.

Remark 4.4 The Airy kernel plays a very important role in many problems, in particular
in the universal laws of extreme values, related to the Tracy-Widom law [80]. We mention
this, not as a coincidence, but because, as we have seen in chapter II counting maps is closely
related to random matrices, and the asymptotic limit is closely related to the eigenvalue
statistics at the end of the spectrum.

So it is very natural that large maps can be related to Tracy-Widom law of extreme
eigenvalues.
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Let us parametrize

Ai(x) =

√
f(x)

2
√
π

e−
∫ x
∞

dx′

f(x′) , Bi(x) =

√
f(x)√
π

e
∫ x
∞

dx′

f(x′) .

The Airy equation Ai′′(x) = xAi(x), implies that f(x) satisfies the differential equation

xf 2 +
f ′2

4
− 1 =

1

2
ff ′′

and taking the derivative again, and after dividing by f ′

1

2
f ′′′ = 2x f ′ + f.

One easily finds from this linear equation and from the leading behavior f ∼ 1/
√
x,

that:

f(x) =
1√
x

+
∞∑

k=1

(6k − 1)!!

25k 3k k!
x−3k− 1

2 .

Then, from eq.(V-4-16) we compute the 1-point function

Ŵ1(s+N−2/3x) = πN2/3 (Ai′(x)Bi′(x)− xAi(x)Bi(x))

= N2/3 1

2 f(x)

(
f ′2(x)

4
− 1− x f(x)2

)

= N2/3

(
1

4
f ′′(x)− x f(x)

)

Taking the derivative again implies N−4/3 Ŵ ′
1(s+N−2/3x) = −f(x)/2, and therefore

Ŵ1(x) = −N
√
x− s+

∞∑

k=1

(6k − 3)!!

25k 3k k!
(x− s)−3k+1/2N1−2k.

We may write it:

Ŵ1(x) =
∞∑

g=0

N1−2g Ŵ (g)
1 (x)

with

Ŵ (0)
1 (x) = −

√
x− s , Ŵ (g)

1 (x) =
(6g − 3)!!

25g 3g g!
(x− s)−3g+1/2.

The τ function (defined in the next section) is simply:

τ = e−
N2s3

12 .

For the Airy system, the polynomial of theorem 4.2 is simply:

Pn(x) = (x− s) δn,0.
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4.8 Tau function

The notion of Isomonodromic Tau-function was defined for any Lax pair by Jimbo-
Miwa [52, 53]. In this book we shall not study in details why the Tau-function is a
useful notion, we just mention that indeed it encodes most of the properties of an
integrable system, it is a very fundamental notion. We refer the reader to literature
on integrable systems for learning more about Tau–functions and their utility, see for
instance [8, 50, 60, 61].

Let us describe how it is defined in our case. In order to define the Tau-function,
we need to consider the large x formal asymptotic expansion of Ψ(x).

First we define

T (x) =

(∫ x

Y (x′) dx′
)

+

where Y (x) =
√

A2(x) +B(x)C(x) is (up to a sign) the eigenvalue of D(x), and ()+
means the strictly positive part of the Laurent series in

√
x (and thus it is independent

of a choice of integration constant). By an easy induction, one sees that the large x
formal asymptotics of Ψ(x) is of the form

Ψ(x) ∼ 1√
2

(
x− 1/4 −x−1/4

x1/4 x1/4

)
Ψ̃(x) e−Nσ3T (x) , σ3 =

(
1 0
0 −1

)
,

and where Ψ̃(x) = Id +O(1/
√
x) is an analytical function of

√
x near ∞:

Ψ̃(x) = Id +
v√
x
σ3 +

v2

2x
Id +

u

2x

(
0 1
1 0

)
+O(x−3/2) ,

1

N
v̇ = u, (V-4-23)

Miwa-Jimbo [52,53] define the Tau-function τ(s) and its log, the free energy function
F(s) = ln τ(s) such that:

∂F
∂s

= −N Res
x→∞

Tr
(
Ψ(x)−1Ψ′(x) σ3

) ∂T (x)

∂s
dx

First notice that

Tr
(
Ψ(x)−1Ψ′(x) σ3

)
= Tr

(
ψ′φ̃+ φ′ψ̃ −ψ′φ− φ′ψ
ψ̃′φ̃+ φ̃′ψ̃ −ψφ̃′ − φψ̃′

)

= ψ′φ̃− φψ̃′ + φ′ψ̃ − ψφ̃′

= 2 Ŵ1(x)

which is a Laurent series in
√
x.

Therefore the definition of the Tau function is equivalent to

Ḟ = −2N Res
x→∞

Ŵ1(x) Ṫ (x) dx

Then, write Y (x) =
√
− detD =

√
1
2 TrD2, so that

2Y (x)
∂Y (x)

∂s
= TrD Ḋ = TrD (−R′ −N [D,R]) = −Tr DR′ = −B(x)
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i.e.

∂Y (x)

∂s
= − B(x)

2 Y (x)
= − B

2
√
B C + A2

= − 1

2
√

(x+ 2u)− 1
2N2

B̈
B + 1

4N2
Ḃ2

B2

= − 1

2
√
x+ 2u

(1 +O(1/x2))

Then, since T (x) =
(∫ x

Y (x′)dx′)
+
, by integration we find

∂T (x)

∂s
= −

√
x.

In our case this leads to

N−1 ∂F/∂s = 2 Res
x→∞

Ŵ1(x)
√
x dx

where Ŵ1(x) = ψ′(x)φ̃(x) − ψ̃′(x)φ(x). Taking another derivative with respect to s,
and using the ∂/∂s equation satisfied by Ψ(x, s), we get

N−1 ∂Ŵ1(x)/∂s = ψ̃′(x)φ̃(x) + ψ′(x)(x+ 2u(s))φ(x)
−((x+ 2u(s))ψ(x))′φ(x)− ψ̃′(x)φ̃(x)

= −ψ(x)φ(x),

and therefore:
N−2 ∂2F/∂s2 = −2 Res

x→∞
ψ(x)φ(x)

√
x dx

From the asymptotic expansion eq.(V-4-23), one has

ψ(x)φ(x) ∼ − 1

2
√
x
(1− u

x
+O(x−3/2))

and thus
N−2 ∂2F/∂s2 = Res

x→∞
(1− u

x
+O(x−3/2)) dx = u

And therefore we find
N−2 ∂2F/∂s2 = u(s).

Therefore we have just recovered the Its-Matveev’s equation [50]:

Theorem 4.3 The Tau-function of the integrable system defined by the Lax pair
(D,R), is such that u(s) is the second derivative of ln τ :

τ(s) = eN
2 h(s) ,

∂2 h(s)

∂ s2
= u(s),

and u(s) is solution of the Gelfan-Dikii equation eq.(V-4-5) of lemma 4.2:

m∑

j=0

t̃jRj+1(u) = s.
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The Tau–function has many properties, which can be found in textbooks and clas-
sical works on integrable systems [8, 50, 60, 61], but which are beyond the scope of the
present book. In some sense, the Tau–function is the most fundamental function char-
acterizing an integrable system, it contains all the information about the integrable
system.

Here, for the integrable system satisfied by the (2m+1, 2) minimal model, the Tau
function can be computed by integrating twice the function u(s) solution of a Painlevé
type equation.

4.9 Large N limit

Our goal is to compare the minimal model’s Tau function with the generating function
of large maps introduced in section 1.3, which is by definition a formal power series
of 1/N , ln Z̃ =

∑
g N

2−2g F̃g, where F̃g is the asymptotic generating function of large
maps. The conjecture of topological gravity (proved below) is that:

τ(s)
?
= Z̃

Therefore, we need to study the formal large N expansion of the minimal model (p, q).

The large N limit for minimal models, is also called ”dispersionless” limit. The
parameter 1/N , which we introduced as the coefficient of the identity in the commutator
[P,Q] = 1

N Id, is called the ”dispersion” parameter. In the large N limit P and Q
tend to commute, 1/N plays the role of ! in quantum mechanics, and the large N limit
is a ”classical limit”.

Intuitively, in this limit, the operators P and Q will be replaced by functions, also
the operator d will be replaced by a function z, and thus P and Q will be replaced by
some functions of z and s.

Taking those observations as a guideline, in analogy with Q = d2 − 2u(s), and
P = dp + . . ., we define:

Definition 4.10 We define two functions x(z, s) and y(z, s) (which will be, as we shall
see later, in some sense the large N limit of Q and P ), polynomials in z, of respective
degree 2 and p, of the form:

x(z, s) = z2 − 2u0(s) , y(z, s) = zp +O(zp−2) .

which we require to satisfy the following Poisson bracket equation (the ”classical limit”
of the string equation [P,Q] = 1/N):

{y, x} def
=
∂y

∂z

∂x

∂s
− ∂y

∂s

∂x

∂z
= 1 . (V-4-24)

Proposition 4.4 the general solution of this Poisson equation is:

x(z, s) = z2 − 2u0(s)

y(z, s) =
m∑

j=0

t̃j

(

z2j+1

(
1− 2u0(s)

z2

)j+1/2
)

+

+
m−1∑

j=0

cj x(z, s)
j ,
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=
m∑

j=0

t̃j Qj(z) +
m−1∑

j=0

cj x(z, s)
j , (V-4-25)

where ()+ means the positive part of the large z Laurent series expansion, where Qj(z)
was introduced in eq.(V-2-3), and where the function u0(s) has to satisfy the algebraic
equation

P(u0(s)) =
m∑

j=0

t̃j (−u0(s)/2)
j+1 (2j + 1)!

j! (j + 1)!
=

s

4
. (V-4-26)

From now on, we shall always consider cj = 0.

proof:
It is very similar to the proof of lemma 4.2, we leave it as an exercise for the reader.
We just mention that once we have seen that the function y(z, s) must be of the

form eq.(V-4-25), the Poisson equation {y, x} = 1, written at z = 0 reduces to:

u̇0(s) y
′(0, s) =

−1

2
,

i.e.
m∑

j=0

t̃j u̇0(s) (−u0(s)/2)
j (2j + 1)!

(j!)2
= −1

2

which can be integrated with respect to s and gives a polynomial equation for u0(s):

P(u0(s)) =
m∑

j=0

t̃j (−u0(s)/2)
j+1 (2j + 1)!

j! (j + 1)!
=

s

4

which is clearly the classical limit of eq.(V-4-5) (i.e. it coincides with eq.(V-4-5) by
removing all derivative terms). In other words, formally in the classical limit, the
non-linear differential equation eq.(V-4-5) for u(t), becomes an algebraic equation for
u0(s).

This is the same equation which we encountered for large maps in eq.(V-3-4).
!

For example, for pure gravity m = 1 we have the classical limit of eq.(V-4-7):

4P(u0) = 3 u2
0 − 2t̃0 u0 = s. (V-4-27)

4.10 Topological expansion

In order to compare minimal models with large maps, we now look for a function u(s)
which is a formal series in 1/N .

Proposition 4.5 The formal series in 1/N solution u(s) to the string equation
eq.(V-4-5), can be expanded as an N−2 power series starting with u0 (solution of
P(u0) = s/4) as a leading order:

u(s) = u0(s) +
∑

k

N−2k uk(s)
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and where all coefficients uk are rational functions of u0 (their denominator is a power
of P ′(u0)):

uk ∈ C(u0).

proof:
One notices that the string equation eq.(V-4-5) involves only N2 and therefore the

expansion is in powers of N2 instead of N . Almost by definition of u0, we see that
u0(s) satisfies the string equation eq.(V-4-5) at N = ∞, and therefore is the first term
of u(s).

Since
P(u0) = s/4

we have

u̇0 =
1

4P ′(u0)
, ü0 =

−P ′′(u0)

16 (P ′(u0))3
,

...
u0 =

3P ′′(u0)2 − P ′(u0)P ′′′(u0)

64 (P ′(u0))5
, . . .

and in general, any derivative of u0 with respect to s can be written as a rational
function of u0, whose denominator is a power of P ′(u0). Solving the string equation
recursively involves derivatives of u0, and thus each uk is a rational function of u0 whose
denominator is a power of P ′(u0).

!

Using the expression of Gelfand-Dikii polynomials eq.(V-4-4), the equation satisfied
by u to order O(1/N4) is

s

4
= P(u)− ü

12N2
P ′′(u)− u̇2

24N2
P ′′′(u) +O(1/N4)

and thus we get

u1 =
ü0

12

P ′′(u0)

P ′(u0)
+

u̇2
0

24

P ′′′(u0)

P ′(u0)
=

1

24

(
ü2
0

u̇2
0

− u0
...

u̇0

)

We could easily obtain u2, u3, . . . by expanding to further orders.

Topological expansion for the Tau-function

Proposition 4.6 We have:
From the 1/N2 expansion of u(s), we get that the Free energy F(s) = ln τ(s) such

that u = 1
N2 F̈ , also has a 1/N2 expansion:

ln τ = F =
∞∑

g=0

N2−2gFg(u0) , F̈g = ug. (V-4-28)

In particular we have

F0 = −4
∑

j,k

t̃j t̃k (−u0/2)
k+j+3 j + k + 4

j + k + 3

(2j + 2)!

j! (j + 2)!

(2k + 2)!

k! (k + 1)!

F1 =
−1

24
ln (−2 u̇0) =

1

24
ln (y′(0, s)).
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proof:
We propose it as an exercise at the end of this chapter. F1 can be easily derived

from the expression of u1 above, and for F0, see the hints in the exercise.
!

Topological expansion for the differential systems

Since the coefficients of the Lax matrix D(x, s) depend on u(s) and its derivatives, it
has a formal 1/N expansion:

D(x, s) =

(
A(x, s) B(x, s)
C(x, s) −A(x, s)

)
=
∑

g

N−kD(k)(x, s)

where

B(x, s) =
∑

k

N−2k B2k(x, s)

C(x, s) = (z2 + 2u− 2u0)B(x, s)− 1

2N2
B̈(x, s) =

∑

k

N−2k C2k(x, s)

A(x, s) =
−1

2N
Ḃ(x, s) =

∑

k

N−2k−1A2k+1(x, s),

and notice that B2k, and thus C2k and A2k+1 are polynomials of x, i.e. polynomials of
z2 = x+ 2u0.

To leading order we have:

D(0)(x, s) =

(
0 B(x, u0)

(x+ 2u0)B(x, u0) 0

)
(V-4-29)

B(x, u0) =
m∑

j=0

j∑

k=0

t̃jx
j−k uk

0

(−1)k (2k − 1)!!

k!

The determinant of D(0)(x, s) is:

detD(0)(x, s) = − (z B(z2 − 2u0, u0))
2.

This means that the eigenvalues of D(0)(x, s) are ±z B(z2 − 2u0, u0).
Notice that z B(z2 − 2u0, u0) is precisely the function y(z, s) of proposition. 4.4, in

eq.(V-4-25).

Definition 4.11 The “classical spectral curve” is the eigenvalue locus of the classical
limit D(0)(x) of the Lax matrix.

If we parametrize x as x = z2 − 2u0, the eigenvalues of D(0)(x, s)) are:

y = ± y(z, s)

where y(z, s) is the function defined in eq.(V-4-25).

193



Written in a parametric form where u0 = u0(s), the classical spectral curve is thus:

E(2m+1,2) =

{
x(z, s) = z2 − 2u0

y(z, s) =
∑

j t̃jQj(z) =
∑

j

∑
l t̃j z

2j+1−2l (−u0/2)l
(2j+1)!

j!
(j−l)!

l! (2j+1−2l)!

(V-4-30)

Remark 4.5 It is important to notice that it is a genus 0 hyperelliptical curve, which
is equivalent to saying that it can be parametrized by a complex variable z (higher genus
would be parametrized by a variable z living on a Riemann surface), and which is equivalent
to saying that the polynomial y2, written as a polynomial in x, has only one simple zero,
located at x = −2u0, all the other zeroes are double zeroes:

y2 = z2 (B(x, u0))
2 = (x+ 2u0) (B(x, u0))

2.

Remark 4.6 It is also the same curve as the blown up spectral curve considered in section
2. This is of course not an accident, this is an indication that indeed, large maps are related
to the Tau-function of the (p, 2) minimal model. Our goal is to show that not only the large
N limits coincide, but the full expansion.

4.11 WKB expansion

Similarly, we can look for a formal large N asymptotic expansion of the solutions
ψ(x, s) of the differential system. To leading order, it takes the WKB form:

ψ(x, s) ∼ e−N
∫ x
−2u0

ydx

√
2 (−x− 2u0)

1
4

(

1 +
∑

k

N−kψk(x, s)

)

ψ̃(x, s) ∼ 1√
2
e−N

∫ x
−2u0

ydx (x+ 2u0)
1
4

(

1 +
∑

k

N−kψ̃k(x, s)

)

and we recall that z = (x + 2u0)
1
2 . The BKW expansion of the other solutions φ and

φ̃, are obtained by changing N → −N . For the matrix Ψ, we have:

Ψ(x, s) ∼ 1√
2

( 1√
z − 1√

z√
z

√
z

)
Ψ̂(x, s) e−N σ3

∫ x
−2u0

ydx

where σ3 = diag(1,−1) (denoted σ3 because it is the 3rd Pauli matrix), and

Ψ̂(x, s) = Id +
∞∑

k=1

N−k Ψk(x, s).

where each Ψk(x, s) is a square matrix independent of N :

Ψk(x, s) =

(
ψk(x, s) φk(x, s)
ψ̃k(x, s) φ̃k(x, s)

)
.
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The fact that Ψ satisfies the differential systems Ψ′ = −N DΨ and Ψ̇ = NRΨ imply
for Ψ̂:

Ψ̂′ = Ny Ψ̂ σ3 −
N

2z

(
Bz2 + C Bz2 − C − 2Az

C − Bz2 − 2Az −Bz2 − C

)
Ψ̂− 1

4z2

(
0 1
1 0

)
Ψ̂

˙̂Ψ = −Nz Ψ̂σ3 +
N

z

(
z2 + u− u0 u0 − u

u− u0 −z2 + u0 − u

)
Ψ̂− u̇0

2z2

(
0 1
1 0

)
Ψ̂

Let us expand it into powers of N , we have:

B(x, s) =
∑

k

N−2k B2k(x, s)

C(x, s) = (z2 + 2u− 2u0)B(x, s)− 1

2N2
B̈(x, s) =

∑

k

N−2k C2k(x, s)

A(x, s) =
−1

2N
Ḃ(x, s) =

∑

k

N−2k−1A2k+1(x, s),

and notice that B2k, and thus C2k and A2k+1 are polynomials of x, i.e. polynomials of
z2. Notice that

C0(x, s) = z2 B0(x, s) = z y.

that gives

ψ′
k = − 1

2z

∑

j≥1

(z2B2j + C2j)ψk+1−2j −
1

2z

∑

j≥1

(z2B2j − C2j)ψ̃k+1−2j

+
∑

j≥0

A2j+1ψ̃k−2j −
1

4z2
ψ̃k

ψ̃′
k = 2yψ̃k+1 +

∑

j≥0

A2j+1ψk−2j +
1

2z

∑

j≥1

(z2B2j − C2j)ψk+1−2j

+
1

2z

∑

j≥1

(z2B2j + C2j)ψ̃k+1−2j −
1

4z2
ψk

ψ̇k =
1

z

∑

j≥1

uj (ψk+1−2j − ψ̃k+1−2j)−
u̇0

2z2
ψ̃k

˙̃ψk = −2zψ̃k+1 +
1

z

∑

j≥1

uj (ψk+1−2j − ψ̃k+1−2j)−
u̇0

2z2
ψk (V-4-31)

and we have similar equations for φk and φ̃k:
We have the following Lemma:

Lemma 4.4 ∀ k ≥ 0, ψk(x, s) − δk,0 and ψ̃k(x, s) are polynomials of 1/z of the same
parity as k and which behave like O(1/z) at large z.

proof:
We proceed by recursion. We have ψ0 = 1 and ψ̃0 = 0, so the recursion hypothesis

holds for k = 0.
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Assume the recursion hypothesis at rank k.

Since ż = u̇0/z, we have that ˙̃ψk is a polynomial of 1/z, and thus from the 4th
equation of eq.(V-4-31), that

ψ̃k+1 =
1

z2

(
Polynomial of 1/z

)

i.e. z2ψ̃k+1 is also a polynomial in 1/z, and it has the parity of k + 1.
Then, the 1st equation of eq.(V-4-31) written at rank k + 1 implies that ψ′

k+1

is a Laurent polynomial of 1/z of parity k + 1 (remember that B2j , C2j , A2j+1 are
polynomials of z2 and thus contain positive powers of z). After integrating with respect
to x = z2 − 2u0, this implies that ψk+1 must be a Laurent polynomial of 1/z of parity
k + 1, plus possibly a term proportional to ln z when k + 1 is even:

ψk+1 =
∑

j≥0

ak+1,jz
j + ck+1 ln z +

∑

j≥1

bk+1,jz
−j .

However, from the large x behavior eq.(V-4-23) we know that at large z, we must
have ψk+1(z) = o(1) and thus the Log term must vanish, and thus zψk+1 is a polynomial
in 1/z, and the parity is clearly k. We have proved the recursion hypothesis to rank
k + 1.

!

Examples:
to the first few orders

ψ0 = 1 , ψ̃0 = 0

ψ1 = − 1

24
(
ü0

u̇0 z
+

u̇0

z3
) , ψ̃1 = − u̇0

4z3

Topological expansion of the kernel

The Christoffel Darboux kernel K(x1, x2) can be rewritten as:

K(x1, x2) =
e−N

∫ z1
z2

ydx

2
√
z1z2

( ψ̂(z1)ˆ̃φ(z2)− ˆ̃ψ(z1)φ̂(z2)

z1 − z2
+

ˆ̃ψ(z1)
ˆ̃φ(z2)− ψ̂(z1)φ̂(z2)

z1 + z2

)
,

and since each term has an expansion in 1/N , whose coefficients are polynomials of
1/z1 and 1/z2, we have:

K(x1, x2) =
e−N

∫ z1
z2

ydx

2
√
z1z2

(
1

z1 − z2
+

∞∑

k=1

N−kKk(x1, x2)

)

where each Kk(x1, x2) is a polynomial in 1/z1 and in 1/z2.

This implies that the correlators also have a 1/N expansion:

Ŵ1(x) = −N y +
1

2z

∞∑

k=1

N−k Kk(x, x).

Ŵ2(x1, x2) =
1

4z1z2 (z1 − z2)2
− 1

(x1 − x2)2
+ O(N−1)
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Topological expansion of the projectors M(x)

The projector M(x) defined in eq.(4.7) also has a large N expansion:

M(x) =
∑

k

N−kM (k)(x) =
1

2
Id− 1

2

(
0 1/z
z 0

)
+O(1/N)

Notice that we have

∀ x1, x2 ,

[
M (0)(x2)

x1 − x2
+

1

2z2

(
0 0
1 0

)
, M (0)(x1)

]
= 0

and thus

∀ x1, x2 ,

[
M(x2)

x1 − x2
+

(
0 0
1
2z2

0

)
, M(x1)

]
= O(1/N)

Lemma 4.5 (Topological expansion) Nn−2Ŵn is a formal power series in powers
of 1/N2

Ŵn(x1, . . . , xn) =
∞∑

g=0

N2−2g−n Ŵ (g)
n (x1, . . . , xn)

where each Ŵ (g)
n is a rational function of the zi =

√
xi + 2u0, with poles only at zi = 0,

except Ŵ (0)
2 and Ŵ (0)

1 which are:

Ŵ (0)
1 = − y(z, s)

Ŵ (0)
2 =

1

4z1z2

1

(z1 − z2)2
− 1

(z21 − z22)
2
=

1

4z1z2(z1 + z2)2
.

This Lemma makes some non-trivial claims, first that there is no odd power of 1/N ,
second that Ŵn starts as N2−n, and third that the coefficients are polynomials of 1/zi.
proof:

Notice that in the products
∏

i K(zσ(i), zσ(i+1)), all the exponentials cancel, and the
square roots 1/

√
zi appear only by pairs, so the result is, order by order in N−k, a

rational fraction of the zi’s having poles at zi = 0, or possibly at zi = zj . Except for

Ŵ (0)
1 and Ŵ (0)

2 , the poles at zi = zj are at most simple poles, and it is easy to see that
in the sum over permutations, the residues cancel, therefore there is no pole at zi = zj.

Thus each Ŵ (g)
n is a rational function of the zi’s having poles only at zi = 0. The cases

of Ŵ2 and Ŵ1 need to be treated separately, and are easy.

The fact that Ŵn has a 1/N2 expansion instead of 1/N comes from a simple sym-
metry argument. In the expression of Ŵn, changing ψ → φ and ψ̃ → φ̃, can also be
obtained by permuting the xi’s, and since we take a symmetric sum, only the terms
which are invariant under the exchange ψ → φ and ψ̃ → φ̃ contribute to Ŵn. Exchang-
ing the two solutions ψ → φ and ψ̃ → φ̃, is also equivalent to changing N → −N , and
therefore Ŵn has the parity (−1)n, in N .
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It remains to prove that the leading order is N2−n. This is obvious for n = 1 or
n = 2. For n ≥ 3, we shall proceed by induction, by applying the insertion operator
defined in section 4.6, which has the property that

δxn+1Ŵn(x1, . . . , xn) = Ŵn+1(x1, . . . , xn, xn+1).

Let us write:

M(x) = xU(x) + A(x)− 1

N

dM(x)

ds

(
0 0
1 0

)

where

U(x) = ψ(x)φ(x)

(
0 0
1 0

)
, A(x) = ψ(x)φ̃(x) Id + ψ(x)φ(x)

(
0 1
2u 0

)
.

Observe that

∀ x, y,α , [A(x) + αU(x), A(y) + αU(y)] = 0.

This implies that the insertion operator δy acts on M(x) like

δyM(x) = [
M(y)

x− y
+ U(y),M(x)]

= − 1

N

1

x− y

(
[xU(y) + A(y), Ṁ(x)

(
0 0
1 0

)
]− [xU(x) + A(x), Ṁ(y)

(
0 0
1 0

)
]
)

+
1

N2

1

x− y

(
Ṁ(x), [Ṁ(y),

(
0 0
1 0

)
]− Ṁ(y)[Ṁ(x),

(
0 0
1 0

)
]
) ( 0 0

1 0

)

and it acts on u(s) by eq.(V-4-20), i.e.

δyu(s) =
1

N

d

ds
ψ(y)φ(y)

therefore the action of the operator δy brings a factor 1/N , and the result is again
expressed in terms of M(x), M(y), and u(s) and their d/ds derivatives, and we recall
that the insertion operator commutes with d/ds.

Since

Ŵ2(x1, x2) =
TrM(x1)M(x2)

(x1 − x2)2
− 1

(x1 − x2)2

is of order O(1) and is expressed only in terms of M , and since for n ≥ 3

Ŵn(x1, . . . , xn) = δxn Ŵn−1(x1, . . . , xn−1)

we see that by recursion:
Ŵn = O(N2−n).

!

We mention that this theorem is far from being true for any Lax matrix. It holds
because our Lax matrix is related to the (p, 2) minimal model.
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4.12 Link with symplectic invariants

We have found that the minimal model correlators Ŵn have a formal large N expansion
of the form

Ŵn(x1, . . . , xn) =
∑

g

N2−2g−n Ŵ (g)
n (x1, . . . , xn)

where each Ŵ (g)
n with 2− 2g− n < 0 is a rational function of the zi =

√
xi + 2u0, with

poles only at zi = 0. And we have found that they satisfy loop equations in theorem
4.2.

Let us define:

ω̂(g)
n (z1, . . . , zn) = Ŵ (g)

n (x(z1), . . . , x(zn))
n∏

i=1

x′(zi) +
δn,2δg,0x′(z1)x′(z2)

(x(z1)− x(z2))2

The first few are easily computed from the BKW expansion, and one finds:

ω̂(0)
1 (z) = − y(z, s) x′(z)

ω̂(0)
2 (z1, z2) =

1

(z1 − z2)2

and all the other ω̂(g)
n (z1, . . . , zn) with 2 − 2g − n < 0 are symmetric polynomials of

1/zi.
Then, since they satisfy loop equations, we have:

Theorem 4.4 The ω̂(g)
n can be computed by the ”topological recursion”

ω̂(g)
n+1(z0, z1, . . . , zn) = − Res

z→0

1
z0−z −

1
z0+z

2y(z, t) x′(z)

[
ω̂(g−1)
n+2 (z,−z, z1, . . . , zn)

+
g∑

h=0

′∑

I⊂{z1,...,zn}

ω̂(h)
1+#I(z, I) ω̂

(g−h)
1+n−#I(−z, {z1, . . . , zn} \ I)

]

In other words, the differentials ω̂(g)
n (z1, . . . , zn)

∏
i dzi, are the symplectic invariant

correlators for the spectral curve of eq.(V-4-30) (see chapter VII for the definition of
symplectic invariants of the spectral curve).

proof:
Notice that, since ω̂(g)

n+1(z0, z1, . . . , zn) is a polynomial in 1/z0, we have the Cauchy
identity:

ω̂(g)
n+1(z0, z1, . . . , zn) = − Res

z→z0

dz

z0 − z
ω̂(g)
n+1(z, z1, . . . , zn)

= Res
z→0

dz

z0 − z
ω̂(g)
n+1(z, z1, . . . , zn)

= − Res
z→0

dz

(z0 − z)y(z)x′(z)
2ω̂(0)

1 (z) ω̂(g)
n+1(z, z1, . . . , zn)
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Then, the loop equations (theorem 4.2) imply that the quantity

2ω̂(0)
1 (z) ω̂(g)

n+1(z, z1, . . . , zn) +
g∑

h=0

′∑

I⊂{z1,...,zn}

ω̂(h)
1+#I(z, I) ω̂

(g−h)
1+n−#I(z, {z1, . . . , zn} \ I)

+ω̂(g−1)
n+2 (z, z, z1, . . . , zn)

is equal to x′(z)2 times a rational function of x(z), with no pole at z = 0 (in fact it is
a polynomial of x(z) plus a rational function of x(z) with poles at z = ±zi), in other
words it cannot contribute to the residue. This shows that

ω̂(g)
n+1(z0, z1, . . . , zn) = Res

z→0

1

(z0 − z) y(z, t) x′(z)

[
ω̂(g−1)
n+2 (z, z, z1, . . . , zn)

+
g∑

h=0

′∑

I⊂{z1,...,zn}

ω̂(h)
1+#I(z, I) ω̂

(g−h)
1+n−#I(z, {z1, . . . , zn} \ I)

]

Then, using the fact that each ω̂(g)
n has a given parity in the zi’s, it is easy to complete

the proof.
A special care is needed for ω̂(1)

1 (z0) because ω̂
(0)
2 (z, z) is ill-defined, but we leave to

the reader to check that the theorem also holds for that case.
!

As an immediate consequence we have that:

Corollary 4.1 The correlation function ω̂(g)
n of the minimal model (2m+1, 2), coincide

with the generating function of large maps ω̃(g)
n of genus g and n ≥ 1 boundaries (defined

in theorem 3.1):
ω̂(g)
n = ω̃(g)

n .

proof:
The topological recursion theorem 4.4 for the minimal model (2m+1, 2), is identical

to the topological recursion of theorem 3.1 for the generating functions of large maps.
Therefore, the ω̂(g)

n of the minimal model (2m + 1, 2) and the generating function

of large maps ω̃(g)
n are both equal to the symplectic invariants of the spectral curve

(x(z, s), y(z, s)), they satisfy the same topological recursion with the same initial con-
dition. !

4.13 Tau function

Here, we prove that the double scaling limits F̃g of the large maps generating functions
(see section 1.3), which coincide with the symplectic invariants Fg of our spectral curve
(see theorem 3.3), do also coincide with the coefficients of the topological expansion of
the minimal model Tau-function introduced in section V.4.8, i.e. prop. 4.6, eq.(V-4-28):

ln τ =
∑

g

N2−2gF̂g , ∂2F̂g/∂s
2 = ug(s).
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From the Poisson equation eq.(V-4-24), it is easy to see that our spectral curve has
the property that

∂y(z, s)

∂s

∣∣∣∣
x(z,s)

= − 1

2z

and thus

x′(z)
∂

∂s

∣∣∣∣
x

y(z, s) = −1 = Res
z′→∞

z′ dz′

(z − z′)2
= Res

z′→∞
z′ ω̂(0)

2 (z, z′) dz′

Knowing that, it follows from general property of symplectic invariants Fg of a spectral
curve (see chapter VII), that:

∂

∂s
F̃g = Res

z→∞
z ω̂(g)

1 (z) dz = 2 Res
x→∞

√
x+ 2u0 Ŵ (g)

1 (x) dx

In other words
∂

∂s
F̃g = 2 Res

x→∞
Ŵ (g)

1 (x)
√
x dx

and summing over g:

1

N

∂ F̃

∂s
= 2 Res

x→∞
Ŵ1(x)

√
x dx =

1

N

∂ F̂

∂s

where the last equality holds by definition of the τ -function in section 4.8.

This proves:

Theorem 4.5 Near a mth order critical point, the coefficients of the double scaling
limit of large maps F̃g such that Fg ∼ (t−tc)

(2−2g) 2m+3
2m+2 F̃g, are the symplectic invariants

of the classical spectral curve eq.(V-4-30), and are such that the generating series:

τ = exp
∑

g

N2−2gF̃g

is the Tau-function of the (2m+1, 2) minimal model, or also, u(s) = d2 ln τ/ds2 satisfies
the m+ 1th Gelfand Dikii equation:

Rm+1(u(s)) = s.

We have thus seen, that the asymptotic generating function which counts large maps
near a critical point of order m, is the Tau-function for the (2m+1, 2) reduction of the
KdV hierarchy. In particular, its second derivative satisfies the (m+1)th Gelfand-Dikii
equation.

4.14 Large N and large s

Rescaling N

We have introduced the parameter N as a scaling parameter in order to define formal
power series.
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But notice that N is redundant, it can be absorbed by the change of variable

s = N− p+1
p+2 s̃ and u(s) = N

−2
p+2 ũ(s̃). We have

Q = N
−2
p+2 Q̃ , P = N

−p
p+2 P̃

with

Q̃ = d̃2 − 2ũ(s̃) , P̃ = d̃p − pũd̃p−2 + . . . , d̃ =
d

ds̃
,

and they satisfy the string equation without 1/N :

[P̃ , Q̃] = Id.

Homogeneous Case

A case particularly interesting is when all t̃j ’s with j < m vanish. In that case, the
equation for u0(s) is simply:

s

4
= P(u0) = t̃m

(2m+ 1)!

m! (m+ 1)!
(−u0/2)

m+1,

i.e. P(u0) is a homogeneous polynomial of u0.
This implies that the BKW expansion of u(s) has only homogeneous terms:

u(s) = u0 +
∞∑

g=1

N−2g cg u1−g(2m+3)
0

where cg are some complex coefficients.

Using the reparametrization s = N− p+1
p+2 s̃ and u(s) = N

−2
p+2 ũ(s̃), this amounts to

writing a large s̃ expansion for ũ:

ũ(s̃) =
∞∑

g=0

ũg s̃
2

p+1 (1−g(p+2)) , ũg = cg

(
−2 t̃m (−1)m (2m+ 1)!!

(m+ 1)!

)− 2
p+1 (1−g(p+2))

.

The coefficients ũg can be found by inserting this expansion into the Gelfand Dikii
equation Rm+1(u) = s, or also, since F =

∑
g N

2−2g F̃g(s) and F̈ = u(s), we have just
shown that, for g ≥ 2:

(1− g) (m+ 1)2

(2m+ 3) (m+ 2− g(2m+ 3))
ũg = F̃g = Fg({x(z, s), y(z, s)}).

We thus formulate the theorem:

Theorem 4.6 If ũ(s̃) writen as a large s̃ series

ũ(s̃) =
∞∑

g=0

ũg s̃
2

p+1 (1−g(p+2))
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is solution of the m+ 1th Gelfand Dikii equation (here we choose N = 1)

t̃m Rm+1(ũ) = s̃,

then

(−ũ0/2)
m+1 =

s

4 t̃m

m! (m+ 1)!

(2m+ 1)!

ũ1 = − m

24 (m+ 1)

and for g ≥ 2, the coefficients ũg of the expansion, are related to the symplectic invari-
ants Fg of the spectral curve S̃

S̃ =

{
x(z) = z2 − 2ũ0

y(z) = t̃mQm(z) = t̃m
∑m

j=0 z2m+1−2j (−ũ0/2)j
(2m+1)!

m!
(m−j)!

j! (2m+1−2j)!

as:
(1− g) (m+ 1)2

(2m+ 3) (m+ 2− g(2m+ 3))
ũg = Fg(S̃).

and as an immediate corollary:

Theorem 4.7 Near a mth order critical point, the double scaling limit of the generating
functions of large maps of genus g:

F̃g = lim
ε→0

ε(2g−2) 2m+3
2m+2 t2g−2 Fg

are related to the coefficients ũg()̃ of the large s̃ expansion of the solution of the m+1th

Gelfand-Dikii equation:

(1− g) (m+ 1)2

(2m+ 3) (m+ 2− g(2m+ 3))
ũg = F̃g.

This theorem is an indication that large maps are related to Liouville conformal
quantum field theory coupled to the (2m+ 1, 2) minimal model.

4.15 Example: Pure gravity case

Let us illustrate all this on the important example of pure gravity case, m = 1, the
(3, 2) minimal model.

We have:

Q = d2 − 2u , P = d3 − 3ud− 3

2N2
u̇.

The string equation [P,Q] = 1
N Id gives the Painlevé I equation for u(s):

3u2 − 1

2N2
ü = s.
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There is a formal solution of this equation with an expansion in powers of 1/N2:

u(s) = −
√

s

3
− 1

48N2 s2
+

49

32N4
√
3 s

9
2

+O(1/N6)

which can be written

u(s) =
∞∑

g=0

cg N−2g u1−5g
0 , u0 = −

√
s

3
.

With the rescaling
u = N

−2
5 ũ , s = N

−4
5 s̃

we have
ũ =

∑

g

ũg s̃
1
2−

5
2 g

The free energy F(s) such that N−2F̈ = u(s) has an expansion:

F(s) = − 4

15
√
3
N2 s

5
2 +

ln s

48
+

7

40
√
3N2 s

5
2

+
∑

g≥3

(N s
5
4 )2−2g F̃g

For example, the first few correlators computed from the topological recursion are

ω̃(0)
3 (z1, z2, z3) =

1

6u0

dz1
z21

dz2
z22

dz3
z23

ω̃(1)
1 (z) =

dz

32 24

(
3

z4 u0
+

1

z2 u2
0

)
.

5 Summary: large maps and Liouville gravity

We have seen that

• Large maps are obtained when the weights tk of k–gons are tuned to some critical,
or multi–critical values. At those critical values, the disc amplitude W (0)

1 (x) has cusps

of the form W (0)
1 (x) ∼ (x− a)p/q ∼ V ′(x)

2 + C (x− a)m+1/2.

• The tuning of the tk’s

tk = tk,c +
∑

j

Ck,j (1− t/tc)
ννj t̃j

comes with some critical exponents

ν =
1

p+ q − 1
=

1

2m+ 2
, νj = 2(m− j)

We then have the scalings

Fg(t, {tk}) ∼ (1− t/tc)
(2−2g)(1−γ/2) t2−2g

c F̃g({t̃j})
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with the exponent (called ”string susceptibility exponent” by physicists)

γ =
−2

p+ q − 1
=

−1

m+ 1
.

Those exponents agree with the KPZ formula.

• The asymptotic generating functions of large maps, are obtained by the topolog-
ical recursion, corresponding to the spectral curve:

E(2m+1,2) =

{
x(z, s) = z2 − 2u0

y(z, s) =
∑

j t̃jQj(z) =
∑

j

∑
l t̃j z

2j+1−2l (−u0/2)l
(2j+1)!

j!
(j−l)!

l! (2j+1−2l)!

which is the blow up of the cusp singularity of W (0)
1 (x) ∼ (x− a)p/q

• This means that when t → tc

Fg ∼ (1− t/tc)
(2−2g) 2m+2

2m+3 t2−2g
c F̃g = (1− t/tc)

(2−2g) 2m+2
2m+3 t2−2g

c Fg(E(2m+1,2)).

and 1− t/tc = ε2 is the ”mesh–size”.

• The asymptotic generating functions of large maps, F̃g, are such that

τ = e
∑

g N2−2g F̃g

is the Tau–function of the mth reduction of the KdV hierarchy of integrable equations,
called the (2m+ 1, 2) minimal model coupled to gravity.

• This means that the second derivative u of ln τ , satisfies a non-linear differential
equation of Painlevé type, namely the m+ 1st Gelfand-Dikii equation:

Rm+1(u) = s.

• This means that the asymptotic generating functions of large maps coincide with
those of the Liouville conformal field theory coupled to gravity.

6 Exercises

Exercise 1: Prove proposition 4.6, i.e. that

F0 = −4
∑

j,k

t̃j t̃k (−u0/2)
k+j+3 j + k + 4

j + k + 3

(2j + 2)!

j! (j + 2)!

(2k + 2)!

k! (k + 1)!
.

Hint: first look for a polynomial S(u0) such that d
ds S(u0) = 4 u0, and show that

S ′(u0) = 16u0P ′(u0).

From there, and from the explicit expression of P(u0), deduce S(u0).
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Then look for a polynomial Ξ(u0), such that d
ds Ξ(u0) = S(u0), and show that

Ξ′(u0) = P ′(u0) S(u0).

From there, deduce the expression of Ξ(u0). It satisfies d2/ds2Ξ = u0, and thus Ξ = F0.

Exercise 2: Prove lemma 4.1 and the recursion for the Gelfand-Dikii polynomials
eq.(V-4-3).

Hint: To prove lemma 4.1, show that

[
(
(Qj− 1

2 )+
)2

, Q] = (Qj− 1
2 )+ [(Qj− 1

2 )+, Q] + [(Qj− 1
2 )+, Q] (Qj− 1

2 )+

is an operator of order at most 2j − 1, and this implies that [(Qj− 1
2 )+, Q] must be an

operator of order 0, i.e. a function of s.
Using (Q1/2)+ = d find R1 = −2u, and then proceed by recursion on j.
First show (using the recursion hypothesis) that it is possible to choose two functions

αj(s) and βj(s) such that

(
Q (Qj− 1

2 )+ + αjd+ βj
)2

= Q2j+1 +O(d2j)

i.e. that

(Qj+ 1
2 )+ = Q (Qj− 1

2 )+ + αjd+ βj = (Qj− 1
2 )+ Q+ (αj + Ṙj)d+ βj

Then, writing that [(Qj+ 1
2 )+, Q] must be an operator of degree 0, find the coefficients

αj, βj , and find the recursion relation for Rj .
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