
Chapter I

Maps and discrete surfaces

In this chapter we define maps, which are discrete surfaces obtained by gluing polygons
along their sides, and we define generating functions to count them. We also derive
Tutte’s equations, which are recursive equations satisfied by those generating functions.

We will also rederive Tutte’s equations in the matrix model language in chapter.II,
and we will give their solution for any topology in chapter.III.

Several classical books exist about maps, for instance: C. Berge [?], W.T. Tutte
[?, ?], J.L. Gross, T.W. Tucker [?], as well as [?, ?, ?, ?].

1 Gluing polygons

The idea of a map, is a collection of countries and seas on a world. However, in our
case, the world is not a sphere or a plane, but a surface with an almost arbitrary
topology, and the countries are polygons. Maps are also called ”discrete surfaces”.

From now on, we shall consider only orientable surfaces, the case of maps on
non-orientable surfaces can be treated in a similar approach, and satisfies the same
topological recursion, but this subject is under development at the time this book is
being written.

1.1 Intuitive definition

Here, we give an intuitive and informal definition of a map. A formal definition is given
in the next subsection, or can be found in [?, ?, ?, ?, ?, ?], and examples can be found
in [?]. The idea is a collection of polygons glued together side by side. We consider
two kinds of polygons: some unmarked ones, and some marked ones.
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Definition 1.1 (Intuitive definition) A map, with n3 unmarked triangles, n4 un-
marked quadrangles, n5 unmarked pentagons, . . ., nd unmarked d−angles, and with k
labeled ”boundaries” of lengths l1, . . . , lk (a boundary of length l is a marked polygon
with l sides, and with one marked clockwise oriented side, boundaries are labeled from
1 to k), is a connected gluing of those polygonal pieces along their edges:

n

n3

4

nd

1 3
l l2l kl

n5

or more precisely, it is the equivalence class of such gluings under graph isomorphisms
(i.e. composition of permutations and rotations of the unmarked i−gons, which pre-
serve the oriented marked edges).

Moreover, we require that unmarked polygons have at least 3 sides, and marked
polygons have length at least li ≥ 1.

Remark 1.1 As mentioned above, this is only an intuitive definition. The actual definition
is given in def 1.2 below, or in [?, ?, ?, ?, ?, ?].

Remark 1.2 Notice that nothing in the definition prevents from gluing a side of a polygon
to another side of the same polygon, in particular to an adjacent side. This means that the
corresponding surfaces can be rather singular.

Remark 1.3 We recall that we consider oriented polygons, thus the two faces of a poly-
gon can be imagined with 2 different colors, and polygons must be glued by their sides
together, respecting the color. The boundaries have a marked edge on their side, and by
convention, we represent the marked edge with an arrow, in such a way that the boundary’s
face sits on the right side of the marked edge.

Remark 1.4 A ”gluing” of polygons means a set of incidence relations, i.e. which edge is
glued to which edge. For example, twists are irrelevant.

=

10



Remark 1.5 Let us emphasize again that we assume that each unmarked polygonal face
(which is not a boundary) has a degree ≥ 3, and ≤ d:

3 ≤ degree of unmarked faces ≤ d

whereas for the boundaries we only require that:

li ≥ 1

The union of all faces of the map, is a surface, and the map can be seen as an
embedding of a graph into a surface. We may consider a marked point at the center
of each boundary face, and thus a map with k boundaries is naturally embedded into
a surface with k-marked points.

The intuitive way of thinking about a boundary would be to exclude the boundaries
from the surface, and thus a map with k boundaries would be naturally embedded into
a surface with k ”holes”, however one should be careful with that too simple picture.
Indeed, one should notice that those surfaces can be rather singular, because nothing
in our definition prevents from gluing a polygon, and in particular a boundary, to itself
or to another boundary. This means that, although the interior of the boundary is an
open disk, the boundary with its border might not be a disk, it might be not simply
connected. Therefore, if we remove the interior of boundaries, the remaining surface
may be singular, and if we remove the boundaries together with their borders, the
removed parts are not necessarily discs removed from the surface.

Examples

Maps with no boundary (k = 0) are called ”closed maps”, and maps with boundaries
are called ”open maps” or ”bordered maps”.

Maps with k = 1 boundary, i.e. with only one marked oriented edge, are also called
rooted maps, and we shall see below that they play an important role.

A map made of only triangles is called a triangulation, a map made with quadrangles
is a quadrangulation. A map with only even polygons is called ”bipartite”.

Example of a triangulation with n3 = 4 triangles (the one on the exterior has 3
sides as well), drawn on the plane, i.e. on the Riemann sphere:

Example of a triangulation with n3 = 3 triangles (one is the exterior one), and one
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boundary k = 1 of length l1 = 3, drawn on the plane, i.e. on the Riemann sphere:

Example of a map with n3 = 2 triangles, and with k = 1 boundary of length
l1 = 8. Notice that the octogon is glued with itself along the marked edge.

Example of a planar map with n3 = 22 triangles, and one boundary (the exterior)
of length l1 = 10:

1.2 Formal definition

There exists several equivalent definitions of maps. Let us give the following ones, and
refer the reader to the literature [] for other ones (for instance in terms of fatgraphs,
or trees,...).

Definition with permutations

A polygon can be seen as a set of edges, together with a cyclic permutation which
encodes which edge is next to which edge along the oriented polygon’s side. In a dual
manner, an edge of the polygon can be seen as an half edge from the center of the
polygon to the edge. We call this half–edge a ”dart”.
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Then, gluing edges together means gluing two darts together. The gluing can thus
be encoded into an involutive application from the set of darts to itself, and with no
fixed point (a dart can’t be glued to itself).

Definition 1.2 A labeled map G = (B, σ1, σ2) is the data of a finite ensemble B (whose
elements are called ”darts” or ”half-edges”) of even cardinal, and two permutations σ1
and σ2 of elements of B, and such that σ2 is an involution without fixed points. The
cycles of σ1 are called faces, the cycles of σ2 are called edges, and the cycles of σ1 ◦ σ2
are called vertices.

1σ

σ

σ2

1

2 labeled maps (B, σ1, σ2) and (B′, σ′
1, σ

′
2) are isomorphic iff there exists a bijection

φ : B → B′, such that σ′
1 = φ ◦ σ1 ◦ φ−1 and σ′

2 = φ ◦ σ2 ◦ φ−1.
A map is an equivalence class of labeled maps modulo isomorphisms.
The map is said connected if σ1 and σ2 act transitively, i.e. if any two elements of

B can be related by a sequence of applications of σ1 and σ2.
The Euler charcteristics of a map is χ = #faces −#edges + #vertices.
The Automorphism group of a labeled map, is the set of bijections φ : B → B, such

that σ1 = φ ◦ σ1 ◦ φ−1 and σ2 = φ ◦ σ2 ◦ φ−1. If two labeled maps are isomorphic, their
automorphism groups are isomorphic, and in particular the number of automorphisms
of a map is well defined (it depends only on the map, not on a labeled map).

Example: the following two permutations encode a labeled map with 1 hexagon
and 2 triangles

σ

σ
1

=

= (10,1)(9,2)(4,3)(8,5)(12,6)(11,7)

(2,3,4,5,6,1)(8,9,7)(11,12,10)

1

5
6

3
4

2
7

10

12
11

9

8

=

=

(2,3,4,5,6,1,8,9,7,11,12,10)

(10,9,4,3,8,12,11,5,2,1,7,11)2

This definition can be modified in order to have boundaries, i.e. marked faces.

Definition 1.3 A labeled map G = (B∗, B, σ1, σ2) is the data of 2 finite ensembles B
and B∗ (whose elements are called ”darts” or ”half-edges”), such that B ∪B∗ has even
cardinal, and two permutations σ1 and σ2 of elements of B ∪ B∗, such that σ2 is an
involution without fixed points, and every cycle of σ1 contains at most one element of
B∗. The cycles of σ1 are called faces, the cycles of σ2 are called edges, and the cycles
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of σ1 ◦ σ2 are called vertices. The cycles of σ1 which contain one element of B∗ are
called marked faces, and the elements of B∗ are marked edges. Each marked face has
exactly one marked edge.

2 labeled maps (B,B∗, σ1, σ2) and (B′, B′∗, σ′
1, σ

′
2) are isomorphic iff there exists a

bijection φ : B ∪ B∗ → B′ ∪ B′∗, such that φ(B∗) = B′∗ and σ′
1 = φ ◦ σ1 ◦ φ−1 and

σ′
2 = φ ◦ σ2 ◦ φ−1.
A map is an equivalence class of labeled maps modulo isomorphisms.
The map is said connected if σ1 and σ2 act transitively, i.e. if any two elements of

B ∪ B∗ can be related by a sequence of applications of σ1 and σ2.
The Euler charcteristics of a map is χ = #faces −#edges + #vertices −#B∗ (we

don’t count marked faces).
The Automorphism group of a labeled map, is the set of bijections φ : B ∪ B∗ →

B ∪ B∗, such that the restriction of φ to B∗ is the identity, and σ1 = φ ◦ σ1 ◦ φ−1 and
σ2 = φ ◦ σ2 ◦ φ−1. The number of automorphisms depends only on the map.

1.3 Topology

The topology of a map, is the topology of the surface with the interior of marked
faces removed, i.e. with k discs removed, it is entirely characterized by its Euler
characteristics:

χ = #vertices −#edges + #unmarked faces.

It is worth:

χ = 2− 2g − k

where g is the genus, i.e. the ”number of handles”, and for non closed surfaces, k is
the number of boundaries.

If g = 0, i.e. if the surface has the topology of a sphere (with k discs removed), we
say that it is a planar map.

Example of a map with no boundary (k = 0) and only 1 hexagon (n6 = 1), whose
opposite sides are glued together. There is 1 face, 3 edges, and 2 vertices (one black
and one white in the picture below), i.e. χ = 0, i.e. g = 1. This map cannot be drawn
on the plane, it can be drawn on a torus:
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Other example: the following map has genus g = 2, and k = 1 boundary, i.e.
χ = −3.

1.4 Symmetry factor

An automorphism of a map defined as in def 1.2 by a set of darts B ∪ B∗ and two
permutations σ1, σ2, is a bijective map φ : B ∪B∗ → B ∪B∗, such that φ|B∗ = Id and

σ1 = φ ◦ σ1 ◦ φ−1 , σ2 = φ ◦ σ2 ◦ φ−1.

Since B ∪ B∗ is a finite set, there can be only a finite number of automorphisms
for each map. There is always an obvious automorphism which is the identity, and
automorphisms always have a group structure, subgroup of the group of permutations
of B ∪ B∗.

Definition 1.4 The symmetry factor #Aut of a map is the number of its automor-
phisms:

#Aut

For generic maps, there is only one automorphism (identity), and #Aut = 1.

Proposition 1.1 For open graphs with k ≥ 1 boundaries, the group of automorphisms
is always trivial

k ≥ 1 ⇒ #Aut = 1.

proof:
Since B∗ is not empty, and since φ|B∗ = Id, there is at least one element for

which φ(x) = x. This implies that σ1(x) and σ2(x) are also fixed by φ, and by an
easy recursion, since the map is connected, i.e. since σ1 and σ2 act transitively, every
element of B can be linked to x by σ1 and σ2 and thus is a fixed point of φ. This
implies that φ = Id, and thus the only possible automorphism is the identity. !

There is another way of computing the symmetry factor.

Definition 1.5 For a given map m = (B,B∗, σ1, σ2), let Gm be the group of relabelings
of unmarked darts leaving faces invariants, i.e. the group of bijections φ : B ∪ B∗ →
B ∪ B∗ such that φ|B∗ = Id and σ1 = φ ◦ σ1 ◦ φ−1

Gm = {φ | σ1 = φ ◦ σ1 ◦ φ−1}
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The group Gm acts on the set of permutation of darts by conjugation, and in particular,
Aut(m) is the stabilizer of σ2 under the Gm action, i.e. the subgroup of Gm which fixes
σ2:

Aut(m) = {φ ∈ Gm | σ2 = φ ◦ σ2 ◦ φ−1}.

We define the set of ”gluings” as the orbit of σ2 under the Gm action, i.e.

Gluings(m) = {φ ◦ σ2 ◦ φ−1 | φ ∈ Gm}

The following is a classical result of group theory

Lemma 1.1 (Orbit-stabilizer theorem) Let G be a group of permutations, acting
on set X, and let x ∈ X.

The orbit of x is G.x = {g.x | g ∈ G}. The stabilizer of x is Gx = {g ∈ G | g.x =
x}. The quotient G/Gx is the set of equivalence classes of G modulo Gx, i.e. an
element of G/Gx can be written g.Gx = {g.h | h ∈ Gx}.

The orbit-stabilizer theorem says that

G.x ∼ G/Gx

and thus
|G| = |G.x|.|G/Gx|.

proof:
The bijection Gx → G/Gx is g.x *→ g.Gx. This map is well defined, because if there

exists g and g′ such that g.x = g′.x, this means that g−1 ◦ g′ belongs to Gx and thus
g.Gx = g′.Gx. The inverse map is also well defined for the same reason. !

The ”orbit-stabilizer theorem” implies

Proposition 1.2 (Symmetry factor and gluing number) Let Σ be a map with n3

triangles, n4 quadrangles,... nd d-gons,... We have:

#Aut × #gluings =
d∏

j=3

jnj nj ! (I-1-1)

where #gluings is the number of ways of obtaining the map Σ by gluing together the
n3 triangles, n4 quadrangles,... nd d-gons, and k marked faces of length l1, . . . , lk with
marked edges.

proof:
Gluings(m) is the orbit of σ2 under Gm, while Aut(m) is the stabilizer of σ2, there-

fore the orbit-stabilizer theorem implies that

#Aut × #gluings = #Gm.

Gm is the conjugacy class of σ1, it depends only on its cycles, i.e. the faces of the map,
and we said there are nj faces of size j. Each cycle of length j can be conjugated by
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j possible cyclic permutations, and cycles of same length can be permuted together,
therefore

#Gm =
d∏

j=3

jnj nj !

!

Example of a closed planar map with no marked edge (k = 0, g = 0, χ = 2) with
2 triangles and 3 quadrangles (including the exterior one), drawn on the sphere. It has
6 vertices, 9 edges, and 5 faces. Its symmetry factor is 6.

Indeed, Aut = Z2×Z3, where Z2 is generated by the automorphism which exchanges the
2 triangles (central symmetry on the figure), and Z3 is generated by the simultaneous
rotation of the triangles (which permutes cyclically the 3 quadrangles).

How many gluings of 2 triangles and 3 quadrangles correspond to that map ? Chose
one of the triangles, and label its 3 sides 1,2,3. There is 6 = 3! ways of gluing the 3
quadrangles to its 3 sides, and each quadrangle can be glued to the triangle along any
of its 4 edges. Then, there is only 3 possibilities to glue the last triangle. Therefore:

#gluings = 3!× 43 × 3 = 27 × 32.

And thus we verify eq.I-1-1 on that example:

6 =
32 2! × 43 3!

27 × 32
.

2 Generating functions for counting maps

Our goal is to count the number of maps having a fixed topology, and fixed numbers
of polygons of given sizes, fixed number of boundaries,... Those numbers of maps can
be collectively encoded in some generating functions. Let us define them below.

2.1 Maps with fixed number of vertices

Definition 2.1 Let M(g)
k (v), be the set of connected maps of genus g, (with umarked

faces of degree ≥ 3 and ≤ d), and k boundaries (marked faces of degree ≥ 1 with one
marked edge), and such that the total number of vertices is v. In addition we define

M
(0)
1 (1) = {.} i.e. we have defined a virtual planar rooted map with 1-vertex to be a

point, it has no faces, and its unique boundary has length l1 = 0.
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Theorem 2.1 M
(g)
k (v) is a finite set.

proof:

Indeed, for any map Σ ∈ M
(g)
k (v), write its Euler characteristics:

2− 2g =

#of faces︷ ︸︸ ︷

k +
d∑

i=3

ni(Σ)−e(Σ) + v

where ni(Σ) is the number of faces of degree i, and where e(Σ) is the number of edges
of Σ, that is, half the number of half-edges:

2e(Σ) =
k∑

i=1

li(Σ) +
d∑

i=3

i ni(Σ)

thus we have:

v + 2g − 2 + k =
1

2

k∑

i=1

li(Σ) +
1

2

d∑

i=3

(i− 2)ni(Σ) (I-2-1)

and since i ≥ 3 in the last sum we have i− 2 ≥ 1 and therefore we find the inequality:

v + 2g − 2 + k ≥ 1

2

k∑

i=1

li(Σ) +
1

2

d∑

i=3

ni(Σ)

in particular, this inequality implies that ni and li are bounded, and therefore there is
a finite number of such maps. !

Examples:

• planar maps with no marked faces and 3 vertices:

#Aut =

M0

(0)
(3) =

6 2
#Aut =

#Aut =
2

• genus 1 maps with no marked faces and 1 vertex

6

M0

(1)
(1) =

4#Aut =#Aut =
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• planar maps with one marked face (the marked face is on the right of the marked
edge, i.e. on the exterior):

=

M1

(0)
(1)

M1

(0)
(2)

M1

(0)
(3)

=

=

Definition 2.2 We define the generating function of maps of genus g with k bound-
aries as the formal power series in t:

W (g)
k (x1, . . . , xk; t3, . . . , td; t)

=
t δk,1δg,0

x1
+

∞∑

v=1

tv
∑

Σ∈M(g)
k (v)

tn3(Σ)
3 tn4(Σ)

4 . . . tnd(Σ)
d

x1+l1(Σ)
1 x1+l2(Σ)

2 . . . x1+lk(Σ)
k

1

#Aut(Σ)

Notational remark: In the rest of this book, we shall write only the dependence in the
xi’s explicitly, whereas the dependence in t, t3, . . . , td, will be implicitly assumed, by
convention we write:

W (g)
k (x1, . . . , xk; t3, . . . , td; t) ≡ W (g)

k (x1, . . . , xk)

By convention we also denote:
Fg ≡ W (g)

0 .

Examples:

W (0)
1 =

t

x
+ t2

(
1

x3
+

t3
x2

)
+ t3

(
2

x5
+

4t3
x4

+
t23
x3

+
2t4
x3

+
2t5
x2

+
2t3t4
x2

)
+O(t4)

F0 = W (0)
0 = t3

(
1

2
t4 +

(
1

6
+

1

2

)
t23

)
+O(t4)

F1 = W (1)
0 = t

(
1

6
t23 +

1

4
t4

)
+O(t2)
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Remark 2.1 As usual in combinatorics, W (g)
k is a generating function, that is a formal

power series in t, or also called an ”asymptotic series”. It is meaningful even when it is
not convergent. It is nothing but a convenient short hand notation for the collection of all

coefficients. However, it turns out (see chapter.III) that each W (g)
n happens to be an algebraic

function of t, and therefore it has a finite radius of convergency. The behaviour in the vicinity
of the radius of convergency can be used to find the asymptotic numbers of large maps (see
chapter V).

Remark 2.2 Notice that for each v, the sum over Σ ∈ M
(g)
k (v) is finite, and therefore the

coefficient of tv in W (g)
k (x1, . . . , xk) is a polynomial in the 1/xi’s.

2.2 Fixed boundary lengths

If we wish to compute generating functions for maps with fixed boundary lengths li,
we simply pick the coefficient of 1/x1+li

i by taking a residue. We define:

Definition 2.3

T (g)
l1,...,lk

= (−1)k Res
x1→∞

. . . Res
xk→∞

xl1
1 . . . xlk

k W (g)
k (x1, . . . , xk) dx1 . . . dxk (I-2-2)

Alternatively:

T (g)
l1,...,lk

= t δk,1δg,0δl1,0 +
∞∑

v=1

tv
∑

Σ∈M(g)
k (v)

tn3(Σ)
3 tn4(Σ)

4 . . . tnd(Σ)
d

#Aut(Σ)

k∏

i=1

δli,li(Σ)

Remark 2.3 [Residues]
The residue at x = α of a function f , picks the coefficient of the simple pole at x = α, i.e.

the coefficient of (x − α)−1 in the Laurent expansion of f in the vicinity of α. For instance
the residue at x = 0 of a Laurent series f(x) is

f(x) =
∑

k

fkx
k ⇒ Res

x→0
f(x)dx = f−1.

Through Cauchy’s residue theorem [], the residue is a contour integral along a small circle
Cα encircling the pole α counterclockwise (and small circle means any circle small enough so
that it doesn’t encircle any other singularity of the integrand):

Res
x→α

f(x) dx =
1

2iπ

∮

Cα
f(x) dx ,

therefore it makes sense to compute a residue of a differential form, for instance Res f(x)dx.
In the literature, the dx is often omitted by abuse of notation, and one often writes Res f(x),
omitting the dx. This can be done only when there is no ambiguity on the integration variable,
and the dx is implicitly assumed. It is particularly important to write the dx, when one wants
to use changes of variables x → z, and thus dx = dx

dz dz. Since changes of variables will play
an important role in this book, we shall always write residues of differential forms.
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Remark 2.4 When changing variable x → 1/x, we have d(1/x) = − dx/x2, and thus
residues at ∞ come with a − sign:

Res
x→∞

1

x
dx = −1

This is why we have the coefficients (−1)k in eq.(I-2-2).

Remark 2.5 differential forms:

One sees, for example from eq.(I-2-2), that W (g)
k (x1, . . . , xk) will always be used to com-

pute residues, i.e. integrals, and in fact, it will always appear together with dx1 . . . dxk as

in W (g)
k (x1, . . . , xk) dx1 . . . dxk. The true nature of W (g)

k (x1, . . . , xk), and of any generat-
ing series, is to be a differential form, and, anticipating on chapter VII, we claim that the
fundamental intrinsic object is the differential form:

ω(g)
k = W (g)

k (x1, . . . , xk) dx1 . . . dxk.

In this notation, dx1 . . . dxk is the tensor product of 1-forms dx1 ⊗ . . . ⊗ dxk, it must not
be confused with an exterior product dx1 ∧ . . . ∧ dxk. It is symmetric in all dxi’s, not
antisymmetric.

Examples:
• If we choose all tj = 0 except t4 0= 0, we count only quadrangulations, and T (g)

4

is the number of rooted quadrangulations of genus g, where all faces (including the
one on the right of the marked edge) are quadrangles. The total number of faces is
n = n4+1, and the number of vertices is v = n+2− 2g. In the 60’s, Tutte (this is the
famous Tutte’s formula [?, ?]) computed that (and we shall reserve it in chapter III):

T (0)
4 = t3

∞∑

n=1

(tt4)
n−1 2 (2n)! 3n

n! (n+ 2)!
= 2t3 + 9t4t4 + 54t5t24 + . . .

The 2 maps of genus 0 with 1 marked quadrangle, 3 vertices and no unmarked quad-
rangles contributing to the term 2t3, are

The 9 maps of genus 0 with 1 marked quadrangle, 4 vertices and 1 unmarked quad-
rangle, contributing to the term 9t4t4, are (where one face is the exterior face, and the
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marked face is the one on the right of the oriented marked edge)

• Similarly, if we choose all tj = 0 except t3 0= 0, we count only triangulations,

and T (g)
3 is the number of rooted triangulations of genus g, where all faces (including

the one on the right of the marked edge) are triangles. The total number of faces is
2n = n3 + 1, and the number of vertices is v = n+ 2− 2g. In chapter III we compute
explicitely:

T (0)
3 = t5/2

∞∑

n=1

(t3
√
t)2n−1 23n+1 Γ(3n2 + 1)

(n+ 2)!Γ(n2 + 1)
= 4t3t3 + 32t4t23 + . . . .

which was also computed by Tutte [?, ?]. The 4 maps of genus 0 with 1 marked triangle,
3 vertices and 1 unmarked triangle, contributing to the term 4t3t3, are (where one face
is the exterior face, and the marked face is the one on the right of the oriented marked
edge)

2.3 Redundancy of the parameters

One can remark that the number of vertices is redundant, because at fixed genus and
boundaries, the number of vertices can be deduced from the numbers of polygonal
faces. In other words the parameter t is redundant with the tj ’s and xj ’s.

Indeed, using eq.I-2-1: v − (2 − 2g − k) = 1
2

∑k
i=1 li +

1
2

∑d
i=3(i − 2)ni, we may

rewrite:

t2g−2+k W (g)
k (x1, . . . , xk)dx1 . . . dxk

= δk,1δg,0
dx1

x1
+

∞∑

v=0

∑

Σ∈M(g)
k (v)

∏d
i=3(ti t

i
2−1)ni(Σ)

∏k
i=1(xi/

√
t)li(Σ)

1

#Aut(Σ)

k∏

i=1

dxi

xi
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This means that we can redefine:

ti → ti t
i
2−1 , xi → xi/

√
t , t → 1

and work with t = 1.
In other words, W (g)

k was defined as a formal power series in a single variable t
(coupled to the number of vertices v), but we may also view it as a formal multiple
power series in each ti and xi, coupled to the number of polygons ni and degrees of
boundaries li.

However, although t is a redundant parameter, we find more convenient to work
with formal series in only one formal variable t than with multiple formal variables,
and we shall keep t throughough this book.

2.4 All genus

It is convenient to define the generating function of maps regardless of their genus.
Thanks to eq.(I-2-1), the number of vertices of a map is always such that v+2−2g−k ≥
0, and this allows to define the following formal power series of t:

Wk =
∞∑

g=0

(
N

t

)2−2g−k

W (g)
k (I-2-3)

one should be careful with this definition, as it is an equality between formal power
series in powers of t, i.e. an equality between the coefficients of terms with equal powers
of t. To any order in t, the sum over g is finite. Therefore the sum over g is NOT a
large N expansion, it is a small t expansion.

Moreover, since any M
(g)
k (v) is a finite set, there is a maximal genus g ≤ gmax(v) for

each v, and the coefficients of Wk in powers of t are polynomials in 1/N .

Similarly, for closed maps k = 0, we note W (g)
0 = Fg, and we can define the all

genus generating function of closed maps:

F =
∞∑

g=0

(
N

t

)2−2g

Fg. (I-2-4)

Remark 2.6 We will see later in this book, that each series W (g)
k has a finite radius of

convergency, and is in fact an algebraic function. But the all genus generating function Wk

is not algebraic, and may have a vanishing radius of convergency.

2.5 Non connected maps

When we have a formal generating series counting disconnected objects multiplicatively,
it is well known that the log is the generating function which counts only the connected
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objects, see []. If we denote ZN(t3, . . . , td; t) the generating function for closed maps
not necessarily connected, we have:

ln (ZN(t3, t4, . . . , td; t)) = F (t3, . . . , td; t;N) (I-2-5)

where again this equality is to be taken as an equality between formal series, i.e.
equality between the coefficients in the small t expansion.

For open maps with k ≥ 1 boundaries, there are several ways of obtaining dis-
connected surfaces, because each disconnected piece may carry either no boundary, or
subsets of the set of boundaries. The generating functions of connected objects are
cumulants of the non-connected ones.

Let W ∗
k (x1, . . . , xk) be the generating function of not-necessarily connected maps of

all genus. We have:
W ∗

1 (x1) = ZN W1(x1)

W ∗
2 (x1, x2) = ZN (W2(x1, x2) +W1(x1)W1(x2))

W ∗
3 (x1, x2, x3) = ZN (W3(x1, x2) +W1(x1)W2(x2, x3) +W1(x2)W2(x1, x3)

+W1(x3)W2(x1, x2) +W1(x1)W1(x2)W1(x3))

and so on, if we note K = {x1, . . . , xk}:

W ∗
k (K) = ZN

k∑

n=1

∑

J1'...'Jn=K

n∏

i=1

W#Ji(Ji)

where we sum over all possible partitions of K.
The converse is called cumulants, or sometimes connected parts:

W1(x1) =
1

ZN
W ∗

1 (x1)

W2(x1, x2) =
W ∗

2 (x1, x2)

ZN
− W ∗

1 (x1)

ZN

W ∗
1 (x2)

ZN

W3(x1, x2, x3) =
W ∗

3 (x1, x2, x3)

ZN
− W ∗

1 (x1)

ZN

W ∗
2 (x2, x3)

ZN
− W ∗

1 (x2)

ZN

W ∗
2 (x1, x3)

ZN

−W ∗
1 (x3)

ZN

W ∗
2 (x1, x2)

ZN
+ 2

W ∗
1 (x1)

ZN

W ∗
1 (x2)

ZN

W ∗
1 (x3)

ZN

and so on...

2.6 Rooted maps: one boundary

The case k = 1, i.e. one boundary plays a special role.
A map with one boundary, is also, by definition, a map with one oriented marked

edge, it is also called a rooted map. The marked face is the face on the right of the
oriented marked edge.
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A reason of the special role of maps with one boundary, is that there is only one
automorphism (the identity) which can conserve the map and the oriented marked
edge. Therefore if k = 1 we have

k = 1 ⇒ #Aut = 1

A planar map with one boundary is called a ”disk”.

3 Tutte’s equations

3.1 Planar case: the disk

The Canadian mathematician Tutte discovered a combinatoric recursive equation in
1963 [?], for counting planar maps with one boundary, i.e. rooted planar maps, or
equivalently disks.

The idea is the following. A planar map with one boundary of length l + 1, is in
fact a planar map with one marked face of degree l+1, with one marked oriented edge
on it. Let us draw the map on the projective plane, such that ∞ is in the marked face,
i.e. the marked face is on the exterior. The marked edge, separates two faces (not
necessarily distinct).

If one removes the marked edge, two situations may occur:
• either the face on the other side of the marked edge was the same, thus if we

remove the edge, we get two planar maps, each having one boundary (we mark the
edges adjacent to the removed edge), one has a boundary of length j, the other l−1−j,
for some j such that 0 ≤ j ≤ l − 1.

• either the face on the other side is not the same, and thus it is an unmarked face
of degree j for some j such that 3 ≤ j ≤ d. When we remove the marked edge, the
map remains connected, and we get a new map, with a boundary of length l + j − 1
(the new marked edge is the one adjacent to the removed edge). Removing the edge
was thus equivalent to removing a j-gone, which has weight tj .

It is easy to see that this procedure of removing the marked edge is a bijection

M
(0)
1;l+1 → ∪l−1

j=0M
(0)
1;j ×M

(0)
1;l−1−j + ∪d

j=3M
(0)
1;l+j−1

and thus Tutte’s equation follows:

T (0)
l+1 =

l−1∑

j=0

T (0)
j T (0)

l−1−j +
d∑

j=3

tjT (0)
l+j−1

(I-3-1)

Tutte’s proof is illustrated as follows:
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3.2 Higher genus case

A similar recursive equation can be found for higher genus or higher number of bound-
aries.

Consider a discrete surface of genus g, with k boundaries of respective lengths
l1 + 1, l2, . . . , lk, and let us denote collectivelly

K = {l2, . . . , lk}

Then we erase the marked edge of the first boundary. Several mutually exclusive
possibilities can occur:

• the marked edge separates the marked face with some unmarked face (let us say
a j-gone with 3 ≤ j ≤ d), and removing that edge is equivalent to removing a
j-gone (with weight tj), and we thus get a map of genus g with the same number
of boundaries, and the length of the first boundary is now l1 + j − 1.

• the marked edge separates two distinct marked faces (face 1 and face m with
2 ≤ m ≤ k, ), thus the marked edge of the first boundary is one of the lm edges
of the mth boundary. We thus get a map of genus g with k − 1 boundaries. the
other k − 2 boundaries remain unchanged, and there is now one boundary of
length l1 + lm − 1.

• the same marked face lies on both sides of the marked edge, therefore by removing
it, we disconnect the boundary. Two cases can occur: either the map itself gets
disconnected into two maps of genus h and g− h, one having 1+#J boundaries
of lengths (j, J), where J is a subset of K, and the other map having k − #J
boundaries of lengths (l1 − 1− j,K \ J), or the map remains connected because
there was a handle connecting the two sides, and thus by removing the marked
edge, we get a map of genus g−1, with k+1 boundaries of lengths (j, l1−j−1, K).

Again, this procedure is (up to the symmetry factors) bijective, and all those pos-
sibilities correspond to the following recursive equation:

l1−1∑

j=0

[ g∑

h=0

∑

J⊂K

T (h)
j,J T (g−h)

l1−1−j,K\J + T (g−1)
j,l1−1−j,K

]
+

k∑

m=2

lm T (g)
lm+l1−1,K\{lm}

= T (g)
l1+1,K −

d∑

j=3

tjT (g)
l1+j−1,K (I-3-2)

which we call ”Loop equation” or ”higher genus Tutte’s equation”.
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This equation is illustrated as follows:

Here, we have presented only an intuitive derivation, and we present a more rigorous
derivation in chapter III, with a very different technique, called loop equations for
formal matrix integrals.
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5 Exercises

Exercise 1:
Count all connected quadrangulations with n4 = 1 and n4 = 2 quadrangles, count

them with their symmetry factors and according to their topology.

answer: There is 1 planar quadrangulation with n4 = 1 quadrangle, and it has
symmetry factor 2, and 1 quadrangulation of genus g = 1 with n4 = 1 quadrangle, and
it has symmetry factor 4.
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There are 2 planar quadrangulations with n4 = 2 quadrangles, one has symmetry
factor 8, one has symmetry factor 1. And there are 4 quadrangulations of genus g = 1
with n4 = 2 quadrangles, one has symmetry factor 8, one has symmetry factor 4, one
has symmetry factor 2, one has symmetry factor 1.

This can be summarized as:

F = t t4

(
N2

2
+

1

4

)
+ t2 t24

(
N2

(
1 +

1

8

)
+

1

8
+

1

4
+

1

2
+ 1

)
+O(t34).

Exercise 2:
Find all planar maps with 1 marked face of arbitrary length l, and whose unmarked

faces are only pentagons, and with up to 5 vertices.
Check that

W (0)
1 =

t

x
+

t2

x3
+ t3

(
2

x5
+

2t5
x2

)
+ t4

(
5

x7
+

9t5
x4

)
+ t5

(
12

x9
+

17t5
x6

+
3t25
x3

)
+O(t6)
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